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1. Introduction

In this paper, we shall prove two theorems concerning the Kobayashi geometry of convex domains in Cn. 
In this section, we introduce these theorems and discuss some of the motivations behind them.

Our first theorem is motivated by the following result of Bernal-González:

Result 1.1 (Bernal-González [1]). Let E, F be two complex Banach spaces. Assume that D1 ⊆ E and D2 ⊆ F

are convex domains and that D1 is bounded. Fix two points a ∈ D1 and b ∈ D2 and a real number r > 0. 
Then there exists a real number σ = σ(a, b, r) > 0 such that, for every holomorphic map φ : D1 → D2
satisfying φ(a) = b,

dist
(
φ({z ∈ D1 | dist(z,Dc

1) > r}), Dc
2
)

� σ,

where

σ := dist(b,Dc
2) exp

(
− 2μ(a)

min
(
r,dist(a,Dc

1)
)
)
, (1.1)

and where μ(a) := sup({‖z − a‖ | z ∈ D1}).
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While this result is stated in a setting that is very general, the dependence of the lower bound for 
dist

(
φ({z ∈ D1 | dist(z, Dc

1) > r}), Dc
2
)

on the parameter r seems to be overly conservative, given that

exp
(
− 2μ(a)

min(r,dist(a,Dc
1))

)

decays extremely rapidly as r → 0. Consider, in contrast, the following: if D1 = D2 = D (in this paper, D
will denote the open unit disk centred at 0 ∈ C), E = F = C and a, b ∈ D, in the notation of Result 1.1, 
then it follows from the Schwarz–Pick lemma that for any holomorphic map φ : D → D such that φ(a) = b, 
and for any s ∈ (0, 1),

dist
(
φ(sD),Dc) � 4−1(1 − s) dist(a,Dc) dist(b,Dc), (1.2)

where (1 − s) serves as the parameter r of Result 1.1. It is natural to think that in finite dimensions, the 
bound in (1.1) could be replaced by a power of r. Interestingly, it turns out that this power can be arbitrarily 
large, even in dimension 1— as we shall see through concrete examples. All of these form the motivation 
for Theorem 1.2 below. In what follows, ‖ · ‖ will denote the Euclidean norm and the expression dist(x, S)
(S being a non-empty set) will be understood in terms of this norm. With these remarks, we can state our 
first result.

Theorem 1.2. Let D1 and D2 be open convex subsets of Cn and Cm respectively. Assume D1 is bounded. 
Fix a ∈ D1 and b ∈ D2. Then there exist constants α ≥ 1 and C > 0—where α depends only on D1 and C
depends only on D1 and a—such that for every holomorphic map φ from D1 to D2 with φ(a) = b, and for 
every r > 0,

dist
(
φ({z ∈ D1 | dist(z,Dc

1) � r}), Dc
2
)

� C dist(b,Dc
2) rα. (1.3)

Moreover, when ∂D1 is C2-smooth, we can take α = 1 in (1.3).

While the dependence on r of the lower bound in (1.3) is a power— which improves upon the expression 
(1.1) —we reiterate that the exponent can in general be large. In Section 2 we give an example in which 
any exponent α for which the bound (1.3) holds true can be no smaller than a certain large number that is 
determined by the geometry of D1. Just as discussed in [1], we may view Theorem 1.2 as a form of Schwarz’s 
lemma for convex domains.

Bernal-González’s result relies upon a well-known estimate for the Carathéodory distance. This estimate 
actually holds true on any bounded domain, whereas it is possible to provide sharper estimates on bounded 
convex domains. This is at the heart of our improvement of Result 1.1. It is more convenient to work with 
the Kobayashi distance. The improved estimate for the Kobayashi distance that we shall use is due to Mercer 
[9]—see Section 3 for details. Our use of Mercer’s estimate is quite similar to its use recently in [11,2].

Before we move on to our second result, we need to introduce two pieces of notation: D(a, r) will denote 
the open disk in C with centre a and radius r, and κD(p, ·) will denote the Kobayashi pseudo-metric of the 
domain D ⊆ Cn at the point p ∈ D.

It is of interest in many applications to be able to estimate κD(p, ·). If nothing is assumed about D
beyond the fact that it is a bounded convex open set, then the best result that seems to be available is the 
following one by Graham:

Result 1.3 (Graham [5, Theorem 3], also see [6]). Let D ⊆ Cn be a bounded convex open set. Given p ∈ D

and ξ ∈ T
(1,0)
p D, we let r denote the supremum of the radii of the disks centred at p, tangent to ξ, and 

included in D. Then
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‖ξ‖
2r � κD(p, ξ) � ‖ξ‖

r
. (1.4)

We ought to clarify that the non-trivial bound in (1.4) is the lower bound. The upper bound is a conse-
quence of the metric-decreasing property of holomorphic mappings. The upper bound in (1.4) is achieved 
as an equality in rare cases. For example, if we take D = D and p to be any off-centre point (p �= 0) then 
the upper bound for κD(p, 1) given by Result 1.3 is 1/(1 − |p|), whereas the actual value of κD(p, 1) is 
1/(1 − |p|2), which is less than 1/(1 − |p|). It is an interesting puzzle to find a better upper bound that can 
be stated (as is the case in Result 1.3) in terms of the positioning of (p, ξ). As the following theorem shows: 
an upper bound on κD(p, ξ) is available that is strictly smaller than that provided by Result 1.3 for (p, ξ)
that is, in a certain sense, “generic” (see the concluding sentence of the following theorem). This theorem 
also shows that this more efficient bound is governed by one of two regimes, both of which do arise (see the 
examples in Section 2).

Theorem 1.4. Let D be a bounded convex open subset of Cn. Let p ∈ D and let ξ ∈ T
(1,0)
p D \ {0}. Write

D(ξ) :=
{
z ∈ C | p + (z/‖ξ‖)ξ ∈ D

}
,

r•(p, ξ) := sup({r > 0 | ∃ζ ∈ D(ξ) such that 0 ∈ D(ζ, r) ⊆ D(ξ)}).

Let

S•(p, ξ) :=
{
p + (z/‖ξ‖)ξ | z ∈ D(ξ), 0 ∈ D(z, r•(p, ξ)) and D(z, r•(p, ξ)) ⊆ D(ξ)

}
. (1.5)

Also, for any w ∈ (p + C ξ), let r(w, ξ) denote the supremum of the radii of the discs centred at w, tangent 
to ξ, and included in D. Then

(1) S•(p, ξ) is a non-empty compact convex subset of Cn (indeed, of D∩(p +C ξ)) and there exists a unique 
point q(ξ) ∈ S•(p, ξ) such that

‖q(ξ) − p‖ = dist(p, S•(p, ξ)).

Write β := r•(p, ξ) − r(p, ξ) and γ := ‖q(ξ) − p‖2 − β2.

(2) Suppose (2r(p, ξ) + β)γ � βr(p, ξ)2. Then

κD(p, ξ) � r•(p, ξ)
r•(p, ξ)2 − ‖q(ξ) − p‖2 ‖ξ‖. (1.6)

(3) Suppose (2r(p, ξ) + β)γ > βr(p, ξ)2. Then

κD(p, ξ) � 1
2r(p, ξ) · β2

‖q(ξ) − p‖(‖q(ξ) − p‖ − √
γ)‖ξ‖. (1.7)

The upper bounds occurring above are strictly smaller than ‖ξ‖/r(p, ξ) unless q(ξ) = p.

The above result is also a part of the effort to provide more informative bounds for κD(p, ·). There are 
works describing the contribution of lower order terms in 1/dist(p, Dc) to asymptotic expressions and to 
bounds for κD(p, ·) when D is a bounded strongly pseudoconvex domain; see [4,8,3]. The description of the 
lower order terms in 1/dist(p, Dc) is in terms of certain geometric invariants of the (C2-smooth) manifold ∂D. 
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While we merely study convex domains D � Cn, we make absolutely no assumptions about the regularity of 
∂D, whence the latter descriptions make no sense in general. Instead, we have the estimates of Theorem 1.4.

The estimates in Theorem 1.4 are often easy to work with (and simplify to quite natural expressions) 
when a specific domain is given. Furthermore, these inequalities are sharp. Indeed, the last sentence of 
Theorem 1.4 suggests that there are instances where the upper bound provided by Result 1.3 is not sharp 
whereas that provided by Theorem 1.4 is. We provide a class of examples illustrating all these points in 
Section 2.

In Section 3 we present the lemmas that will be needed to prove Theorem 1.2. Section 4 contains the 
proof of, essentially, the planar version of Theorem 1.4, from which a substantial part of Theorem 1.4 is 
derived. Finally, Sections 5 and 6 contain, respectively, the proofs of Theorems 1.2 and 1.4.

2. Examples

We first present the example alluded to in the paragraph following Theorem 1.2.

Example 2.1. An example of a bounded convex domain Ωh � C and a holomorphic map φ : Ωh → D where 
any α for which the bound (1.3), with D1 = Ωh and D2 = D, holds true is large.

Consider, for an arbitrary (small) h > 0 the bounded convex region

Ωh := D
(
i(1 − h), 1

)
∩D

(
− i(1 − h), 1

)
.

Write C1 := ∂D
(
i(1 − h), 1

)
and C2 := ∂D

(
− i(1 − h), 1

)
. Then C1 and C2 intersect at two points c and 

−c, where

c :=
√

2h− h2.

Observe that Ωh has the shape of the cross-section of a lens, with vertices ±c ∈ R. Let us construct a 
biholomorphism φ from Ωh to D. Consider the following four functions:

f1(z) := 1
z − c

∀ z ∈ C \ {c},

f2(z) := −
(
z + 1

2c

)
∀ z ∈ C,

f3(z) := zβ ∀ z such that Re z > 0,

f4(z) := z − 1
z + 1 ∀ z ∈ C \ {−1},

where f3 is the holomorphic branch of the β-th power that maps R+ onto R+,

β := π

2A and A := arctan
(√

2h− h2

1 − h

)
.

Here, 2A is the magnitude of the smaller angle that the circles C1 and C2 make with one another at 
both c and −c, and also (by conformality) the acute angle between the lines L1 and L2, which the circles 
C1 and C2 get mapped to, respectively, under f1, at their point of intersection, − 1

2c . The composition 
φ := f4 ◦ f3 ◦ f2 ◦ f1 makes sense on Ωh, and it follows from standard facts about Möbius transformations 
that it is a biholomorphism from Ωh to D. The explicit expression for φ is given by
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φ(z) =

(
z+c

2c(c−z)

)β

− 1(
z+c

2c(c−z)

)β

+ 1
.

Now, for t > 0 small, consider the point c −t of Ωh. A simple geometric argument shows that the distance 
d(t) of this point from Ωc

h is

d(t) = t

(
2c− t

1 +
√
t2 − 2ct + 1

)
.

Therefore d(t) ≈ t as t → 0. Consider the set

Ωh,t := {z ∈ Ωh | dist(z,Ωc
h) � d(t)}.

Note that c − t is a boundary point of Ωh,t. Therefore φ(c − t) ∈ φ
(
Ωh,t

)
; it, too, is a boundary point. Also,

φ(c− t) =
( 2c−t

2ct
)β − 1( 2c−t

2ct
)β + 1

.

The distance of φ(c − t) from Dc is

1 − φ(c− t) = 2(2ct)β

(2c− t)β + (2ct)β .

Therefore, denoting by d′(t) the distance of φ(c − t) from Dc, we see that d′(t) ≈ tβ as t → 0.
Now, dist

(
φ(Ωh,t), Dc) � d′(t) and so dist

(
φ(Ωh,t), Dc) = O(tβ) as t → 0. Let us write

I := inf{α > 0 | ∃C(α) > 0 such that dist
(
φ(Ωh,t),Dc) � C(α)d(t)α as t → 0}.

Recall that d(t) ≈ t as t → 0. Clearly, then, I ≮ β. I.e., no exponent smaller than β would suffice for 
the bound (1.3) in this example. Finally, observe that β can be made arbitrarily large by taking h to be 
sufficiently small. �

Example 2.2. A family of examples for which the bound provided by Theorem 1.4 is sharp while the upper 
bound provided by Result 1.3 is strictly greater.

Consider D = Bn, the unit Euclidean ball with centre 0 ∈ Cn. Let us consider a point p ∈ Bn \ {0}. By the 
fact that unitary transformations are holomorphic automorphisms of Bn, it suffices to consider (p, ξ) of the 
form 

(
x, (‖ξ‖, 0, . . . , 0)

)
, x ∈ Bn. Let us write v := (‖ξ‖, 0, . . . , 0). We leave it to the reader to verify that

D(v) = D
(
− x1,

√
1 − ‖x′‖2

)
, r•(x, v) =

√
1 − ‖x′‖2,

S•(x, v) = {(0, x′)}, q(v) = (0, x′),

where we write x = (x1, x′). It is easy to see that the expression (2r(x, v) + β)γ reduces to 0, whence, by 
item (2) of Theorem 1.4, we get the bound (note that ‖ξ‖ = ‖v‖)

κBn(x, v) �
√

1 − ‖x′‖2

1 − ‖x‖2 ‖ξ‖. (2.1)

The exact expression for κBn(p, ξ)— see [7, Section 3.5], for instance— is as follows:
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κBn(p, ξ) = κBn(x, v) =
(

‖v‖2

1 − ‖x‖2 + |〈v, x〉|2
(1 − ‖x‖2)2

)1/2

=
(
1 − (‖x‖2 − |x1|2)

)1/2
1 − ‖x‖2 ‖ξ‖.

We see that whenever p �= 0 and ξ ∈ Cp, the unitary transformation that maps ξ to (‖ξ‖, 0, . . . , 0) (and p to 
x) gives x = (c‖p‖, 0, . . . , 0), where c is some complex number with |c| = 1. Since, for any such (p, ξ), x′ = 0, 
it follows from (2.1) that the bound for κBn(p, ξ) provided by Theorem 1.4 is exactly equal to κBn(p, ξ), 
whereas the upper bound provided by Result 1.3 is ‖ξ‖/(1 − ‖p‖), which is strictly greater. �

Example 2.3. An example showing that the condition appearing in Item 3 of Theorem 1.4 holds in simple 
situations.

Before presenting this example, we observe that the condition appearing in Item 2 of Theorem 1.4 holds for 
the family of examples discussed in Example 2.2. Now, consider the domain

D :=
{
z ∈ C | (|z| < 1) or

(
2−1 < Re(z) < 2 and |Im(z)| < 2√

3
(
1 − 2−1Re(z)

) )}
.

This is the unit disk together with all those z ∈ C such that Re(z) > 1/2 and such that z lies in the angle 
formed by the tangent lines to the unit circle at the points (1/2, 

√
3/2) and (1/2, −

√
3/2). Consider the 

open subset U of D given by
{
z = x + iy ∈ C |

√
3/2 < x < 1, |y| < 5/7

√
3
}
∩D.

We will show that, for every z ∈ U , the condition in Item 3 of Theorem 1.4 holds for the pair (z, 1) (and 
therefore, since we are in one dimension, for any pair (z, ξ), where ξ ∈ C \ {0}). By the symmetry of D
about the real axis, it suffices to show that the condition holds for every z ∈ U with y � 0. For such a z, 
r(z, 1) equals the distance from z to the tangent to the unit circle at (1/2, 

√
3/2), which is (2 −x −

√
3y)/2. 

Also, for such a z, r•(z, 1) = 1 and S•(z, 1) = {0}. So, necessarily, q(1) = 0. The quantity of our interest 
is

(2r(z, 1) + β)γ − βr(z, 1)2,

which, after substituting the expressions for β and γ, is:

|q(1) − z|2
(
r•(z, 1) + r(z, 1)

)
− r•(z, 1)2

(
r•(z, 1) − r(z, 1)

)
.

Substituting the actual values, we get:

(x2 + y2)
(

1 + 2 − x−
√

3y
2

)
−
(

1 − 2 − x−
√

3y
2

)

>
(3/4)(4 − x−

√
3y) − x−

√
3y

2 [since x >
√

3/2]

= 12 − 7x− 7
√

3y
8 >

5 − 7
√

3y
8 [since x < 1]

> 0 [since y < 5
7
√

3 ].

This shows that for every z ∈ U , the condition appearing in Item 3 of Theorem 1.4 holds for the pair
(z, 1). �
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3. Preliminary lemmas

In order to prove Theorem 1.2, one needs to efficiently estimate the Kobayashi distance on D1. One of the 
most basic estimates, which holds true on any bounded domain Ω, is that, given a compact convex subset 
K of Ω, the Kobayashi distance kΩ has the following upper bound:

kΩ(z, w) � 1
dist(K,Ωc)‖z − w‖ ∀ z, w ∈ K. (3.1)

This is essentially the estimate that is used by Bernal-González (he uses the Carathéodory distance, for 
which an analogue of (3.1) holds). We need a more efficient upper bound. By the nature of these estimates, 
this is a challenge only close to ∂D1. Now (3.1) arises from a comparison between the Kobayashi metrics of 
Ω and of an appropriate Euclidean ball embedded into Ω. This comparison yields the following inequality:

κΩ(p, ξ) � ‖ξ‖
dist(p,Ωc) , p ∈ Ω, ξ ∈ T (1,0)

p (Ω). (3.2)

The above suggests that a more efficient estimate for kD1 could, in principle, be obtained by a comparison 
between the Kobayashi metrics of D1 and of (the embedded image of) some class of planar regions that 
are better adapted to the shape of ∂D1. This leads us to appeal to an idea described and used by Mercer 
[9]. We consider the class of regions in C defined as follows: for every α > 1, let Λα denote the image of D
under the holomorphic mapping

f := z �→ (z + 1) 1
α : {w ∈ C | Rew > −1} → C.

For α = 2, Λα is the interior of one loop of the lemniscate. The following two results are proved in [9, pp. 
203–204]:

Lemma 3.1 (Mercer, [9, Lemma 2.1]). Let z0 ∈ Λα. Then there exists a C > 0 such that, for all z ∈ Λα,

kΛα
(z0, z) � C + α

2 log
(

1
dist(z,Λc

α)

)
.

The above lemma; a result on how the domains Λα relate to a given convex, planar domain; and a 
comparison between the Kobayashi distances of Ω (as below) and of a suitable affine embedding of Λα into 
Ω yield the result that we need:

Lemma 3.2 (Mercer, [9, Proposition 2.3]). Let Ω ⊆ Cn be a bounded convex domain, and let z0 ∈ Ω. Then 
there are constants α > 1 and C(z0) > 0 such that, for every z ∈ Ω,

kΩ(z0, z) � C(z0) + α

2 log
(

1
dist(z,Ωc)

)
.

The bound in the above lemma can be tighter if Ω, in addition to the properties stated in Lemma 3.2, has 
C2-smooth boundary. In that case, one can carry out the procedure hinted at prior to Lemma 3.2 with Λα

replaced by the unit disk D. This argument is very classical and widely known. Its first step is the analogue 
of Lemma 3.1 for D, which is just a direct calculation: fixing a z0 ∈ D, there exists a C > 0 such that

kD(z0, z) � C + 1
2 log

(
1

dist(z,Dc)

)

for all z ∈ D. This leads to the classical result:
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Lemma 3.3. Let Ω ⊆ Cn be a bounded convex domain whose boundary is C2-smooth. Let z0 ∈ Ω. Then there 
is a constant C(z0) > 0 such that, for every z ∈ Ω,

kΩ(z0, z) � C(z0) + 1
2 log

(
1

dist(z,Ωc)

)
.

Finally, we have the following lemma that gives a useful estimate on kΩ from below:

Lemma 3.4. Let Ω � Cn be a convex domain. Then

kΩ(z, w) � 1
2 log

(
dist(w,Ωc)
dist(z,Ωc)

)
∀ z, w ∈ Ω.

Proof. Fix z, w ∈ Ω. Choose q ∈ ∂Ω such that dist(z, Ωc) = ‖z − q‖. By the convexity of Ω, we may choose 
a C-linear functional F : Cn → C such that

Ω ⊆ {x ∈ Cn | Im(F (x− q)) > 0},

i.e., such that

H := {x ∈ Cn | Im(F (x− q)) = 0}

is a supporting hyperplane for Ω at q. In fact, we can choose F such that, for every x ∈ Cn, |Im(F (x −q))| =
dist(x, H). Consider the C-affine function T on Cn given by

T (x) := F (x− q) ∀x ∈ Cn.

Then, T maps Ω holomorphically into the upper half plane H. By the Kobayashi-distance-decreasing prop-
erty of T and the formula for the Kobayashi distance in H,

kΩ(z, w) � kH(T (z), T (w)) � 1
2 log

(
Im(T (w))
Im(T (z))

)
= 1

2 log
(

Im(F (w − q))
Im(F (z − q))

)
.

Recall that Im(F (z− q)) = dist(z, H) = dist(z, Ωc). Furthermore, Im(F (w− q)) = dist(w, H) � dist(w, Ωc). 
Therefore, the sequence of inequalities above gives

kΩ(z, w) � 1
2 log

(
dist(w,Ωc)
dist(z,Ωc)

)
.

Since the points z, w ∈ Ω were arbitrarily chosen, we have the conclusion desired. �
4. Lemmas concerning planar convex domains

In this section we will state and prove a number of lemmas about planar convex domains, which will be 
used to prove our second result. We abbreviate dist(x, Ωc) to δΩ(x) in this section.

Lemma 4.1. Let Ω ⊆ C be an open convex set and let p, ζ ∈ Ω. Let R(p), R(ζ) > 0 be such that D(p, R(p)) ⊆
Ω and D(ζ, R(ζ)) ⊆ Ω. Then, for every t ∈ [0, 1], Ω includes the disk in C with centre (1 − t)p + tζ and 
radius (1 − t)R(p) + tR(ζ).
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We omit the proof because it is straightforward. The main idea behind the proof is to show that the 
disk described in the above lemma is contained in the convex hull of the union of the disks D(p, R(p)) and 
D(ζ, R(ζ)).

Lemma 4.2. Let Ω ⊆ C be an open convex set and let p ∈ Ω. Suppose ζ ∈ Ω is such that

p ∈ D
(
ζ, δΩ(ζ)

)
. (4.1)

Then, for every t ∈ [0, 1),

p ∈ D
(
(1 − t)p + tζ, (1 − t)δΩ(p) + tδΩ(ζ)

)
⊆ Ω.

Now suppose δΩ(ζ) > δΩ(p). Let rζ(t) := (1 − t)δΩ(p) + tδΩ(ζ) ∀ t ∈ [0, 1], let α := |ζ − p| and let β :=
δΩ(ζ) − δΩ(p). If we consider the mapping

φζ := t �→ rζ(t)
rζ(t)2 − t2|ζ − p|2 : [0, 1) → R,

then

(1) φζ is differentiable;
(2) If (α2 − β2)(2δΩ(p) + β) � βδΩ(p)2 then φζ is continuously extendable to [0, 1] and the minimum value 

of φζ is

δΩ(ζ)
δΩ(ζ)2 − |ζ − p|2 ;

(3) If (α2 − β2)(2δΩ(p) + β) > βδΩ(p)2 then φζ attains its minimum value at

t(ζ) := δΩ(p)−(α2 − β2) + α
√

α2 − β2

(α2 − β2)β ∈ (0, 1)

and its minimum value is

φζ

(
t(ζ)

)
= 1

2δΩ(p) · β2

α
(
α−

√
α2 − β2

) .
(4) Finally, the minimum value of φζ is less than 1

δΩ(p) .

Proof. In order to prove that

p ∈ D
(
(1 − t)p + tζ, (1 − t)δΩ(p) + tδΩ(ζ)

)
⊆ Ω,

we first have to prove that |p −
(
(1 − t)p + tζ

)
| = t|ζ−p| < (1 − t)δΩ(p) + tδΩ(ζ). But by the condition (4.1),

t|ζ − p| � tδΩ(ζ) < (1 − t)δΩ(p) + tδΩ(ζ) ∀ t < 1. (4.2)

The inclusion statement follows from Lemma 4.1.
Turning to φζ , it is clear from (4.2) that it is well-defined and differentiable on [0, 1).
Suppose first that (α2 − β2)(2δΩ(p) + β) � βδΩ(p)2. Then note that necessarily |ζ − p| < δΩ(ζ). To see 

this, suppose |ζ − p| = δΩ(ζ). Then



10 A. Maitra / J. Math. Anal. Appl. 484 (2020) 123694
(α2 − β2)(2δΩ(p) + β) =
(
δΩ(ζ)2 − (δΩ(ζ) − δΩ(p))2

)
(δΩ(ζ) + δΩ(p))

= 2δΩ(ζ)2δΩ(p) + δΩ(ζ)δΩ(p)2 − δΩ(p)3

> βδΩ(p)2,

which is a contradiction. So |ζ − p| < δΩ(ζ) and this shows that the expression for φζ(t) makes sense for 
t ∈ [0, 1]. Moreover, φζ is differentiable on [0, 1] in this case. A calculation shows that

φ′
ζ(t) = −βδΩ(p)2 + (α2 − β2)(2δΩ(p)t + βt2)(

rζ(t)2 − t2α2
)2 .

If α � β then clearly φ′
ζ(t) < 0 for all t ∈ [0, 1]. And if α > β, then, for all t ∈ [0, 1),

(α2 − β2)(2δΩ(p)t + βt2) < (α2 − β2)(2δΩ(p) + β) � βδΩ(p)2,

whence

φ′
ζ(t) < 0 ∀ t ∈ [0, 1). (4.3)

So, in the case under consideration, one invariably has that φζ attains its minimum value at 1, and the 
minimum value is

δΩ(ζ)
δΩ(ζ)2 − |ζ − p|2 .

Furthermore, by (4.3), the minimum value above is less than 1
δΩ(p) .

Suppose now that (α2 − β2)(2δΩ(p) + β) > βδΩ(p)2. Then one necessarily has α > β. Furthermore, one 
expects a critical point of φζ in (0, 1). In this case, by calculating the critical points of φζ , we obtain that 
φζ attains its minimum value at

t(ζ) := δΩ(p)−(α2 − β2) + α
√

α2 − β2

(α2 − β2)β ,

which is a point of (0, 1), and that the minimum value of φζ is

φζ

(
t(ζ)

)
= 1

2δΩ(p) · β2

α2 − α
√

α2 − β2
.

The following calculation shows that the minimum value above is less than 1
δΩ(p) :

β2

α2 − α
√

α2 − β2
< 2

⇐⇒ 4α2(α2 − β2) < (2α2 − β2)2 (in this case α2 − β2 > 0)

⇐⇒ 0 < β4.

As the last inequality is true, together with what we obtained in the other case, we get (4). �
Before we state our last lemma we need to make two definitions. For Ω an open bounded convex subset 

of C and for p ∈ Ω, we let
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r•Ω(p) := sup
(
{ r > 0 | ∃ζ ∈ Ω such that p ∈ D(ζ, r) ⊆ Ω }

)
(4.4)

and we let

S•
Ω(p) := { ζ ∈ Ω | p ∈ D(ζ, r•Ω(p)) and D(ζ, r•Ω(p)) ⊆ Ω}. (4.5)

Proposition 4.3. Let Ω ⊆ C be an open bounded convex set and let p ∈ Ω. For any ζ ∈ Ω such that 
δΩ(ζ) > δΩ(p), let φζ denote the same function as in Lemma 4.2. Then

(1) S•
Ω(p) is a non-empty compact convex subset of Ω.

(2) There exists a unique point ζ ∈ S•
Ω(p) such that

|ζ − p| = dist(p, S•
Ω(p)). (4.6)

In the next two statements, ζ is the point in S•
Ω(p) introduced in (2).

(3) Suppose 
(
|ζ − p|2 − (r•Ω(p) − δΩ(p))2

)(
r•Ω(p) + δΩ(p)

)
� (r•Ω(p) − δΩ(p))δΩ(p)2. Then

κΩ(p, 1) � r•Ω(p)
r•Ω(p)2 − |ζ − p|2 � 1

δΩ(p) , (4.7)

where the latter is an equality if and only if ζ = p.
(4) Suppose 

(
|ζ − p|2 − (r•Ω(p) − δΩ(p))2

)(
r•Ω(p) + δΩ(p)

)
> (r•Ω(p) − δΩ(p))δΩ(p)2. Then, with α and β

denoting the same quantities as in Lemma 4.2,

κΩ(p, 1) � 1
2δΩ(p) · β2

α
(
α−

√
α2 − β2

) <
1

δΩ(p) . (4.8)

Proof. First we prove that S•
Ω(p) is non-empty. Choose an increasing sequence (rν)ν�1 from the set occurring 

in (4.4) such that rν > r•Ω(p) − 1
ν . For each ν, there is a ζν ∈ Ω such that

p ∈ D(ζν , rν) ⊆ Ω.

By the boundedness of Ω, there exists a w ∈ Ω such that (without loss of generality) ζν → w. Since, for 
each ν, |p − ζν | < rν , therefore, by taking the limit, |p − w| � r•Ω(p), i.e., p ∈ D(w, r•Ω(p)). Now suppose 
x ∈ D(w, r•Ω(p)). Let ε := (r•Ω(p) − |x − w|)/2. Choose ν′ ∈ Z+ such that r•Ω(p) − rν′ < ε. Then choose 
ν � ν′ such that |w − ζν | < ε. Then,

|x− ζν | � |x− w| + |w − ζν | < |x− w| + ε = r•Ω(p) − ε < rν′ � rν .

So, x ∈ D(ζν , rν), whence x ∈ Ω. Therefore D(w, r•Ω(p)) ⊆ Ω. So w ∈ S•
Ω(p), whence S•

Ω(p) is non-empty. 
Hence it makes sense to talk of points of S•

Ω(p) at least distance from p. Also, note that if w ∈ S•
Ω(p) then 

δΩ(w) = r•Ω(p) (since δΩ(w) � r•Ω(p), and if strict inequality held then the maximality of r•Ω(p) would be 
contradicted).

Now we prove the compactness of S•
Ω(p). Since S•

Ω(p) is a bounded subset of C, it suffices to prove 
that it is a closed subset of C. So suppose (ζν)ν�1 is a sequence of points of S•

Ω(p) converging to w ∈ C. 
That p ∈ D(w, r•Ω(p)) is obvious. Now we show that D(w, r•Ω(p)) ⊆ Ω. Suppose x ∈ D(w, r•Ω(p)). Let 
ε := r•Ω(p) − |x − w|. Choose ν ∈ Z+ such that |w − ζν | < ε. Then

|x− ζν | � |x− w| + |w − ζν | < r•Ω(p).
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So x ∈ D(ζν , r•Ω(p)), whence x ∈ Ω. As this is true for any x ∈ D(w, r•Ω(p)), the latter is a subset of Ω. So 
w ∈ S•

Ω(p) and this argument shows that S•
Ω(p) is a compact subset of Ω.

Finally we prove that S•
Ω(p) is convex. To this end, suppose ζ1, ζ2 ∈ S•

Ω(p) and that t ∈ [0, 1]. We want 
to prove that (1 − t)ζ1 + tζ2 ∈ S•

Ω(p). In order to do this we have to prove that D
(
(1 − t)ζ1 + tζ2, r•Ω(p)

)
⊆ Ω

and that p ∈ D
(
(1 − t)ζ1 + tζ2, r•Ω(p)

)
. The first inclusion follows from Lemma 4.1. As for the second 

containment,

|p− ((1 − t)ζ1 + tζ2)| = |((1 − t)p + tp) − ((1 − t)ζ1 + tζ2)|
� (1 − t)|p− ζ1| + t|p− ζ2|
� (1 − t)r•Ω(p) + tr•Ω(p) = r•Ω(p).

This shows that (1 − t)ζ1 + tζ2 ∈ S•
Ω(p), which proves that S•

Ω(p) is convex. This proves (1).
We equip C with the standard Hilbert space structure from which the Euclidean norm arises. Note that 

the expressions in (4.6) are derived from the Euclidean norm. Since S•
Ω(p) is closed and convex, it follows 

from a theorem in the elementary theory of Hilbert spaces (see [10, Theorem 4.10], for instance) that there 
is a unique ζ ∈ S•

Ω(p) such that (4.6) holds.
Now suppose the condition in (3) holds. We divide the discussion into two further sub-cases:

Sub-case (a) r•Ω(p) = δΩ(p).
In this case, p ∈ S•

Ω(p) and so ζ must be p. Consequently, in this case,

κΩ(p, 1) � 1
δΩ(p) = r•Ω(p)

r•Ω(p)2 − |ζ − p|2 ,

where we have used the estimate (3.2) to write the first inequality.
Sub-case (b) r•Ω(p) > δΩ(p).
In this case, we note that, since δΩ(ζ) = r•Ω(p) and therefore δΩ(ζ) > δΩ(p), we can appeal to Lemma 4.2. 
By that lemma we have, for an arbitrary t ∈ [0, 1), p ∈ D

(
(1 − t)p + tζ, rζ(t)

)
. Now we estimate κΩ(p, 1). 

For t ∈ [0, 1) arbitrary, consider the holomorphic function

ft := z �→ (1 − t)p + tζ + rζ(t)z : D → Ω.

That ft(D) ⊆ Ω follows from Lemma 4.1 with R(p) = δΩ(p) and R(ζ) = δΩ(ζ). For every z ∈ D, f ′
t(z) =

rζ(t). Write z0 := t(p − ζ)/rζ(t) ∈ D. Then, by the metric-decreasing property of ft,

κΩ(p, 1) = κΩ

(
ft(z0), f ′

t(z0)
1

rζ(t)

)
� κD

(
z0,

1
rζ(t)

)
= rζ(t)

rζ(t)2 − t2|ζ − p|2 = φζ(t).

Minimizing the right-hand side of the inequality above with respect to t tells us that the minimum of the 
function φζ is an upper bound for κΩ(p, 1). Now we determine the minimum of φζ. The condition satisfied 
by ζ is simply a restatement of the condition occurring in (2) of Lemma 4.2. So by that lemma, the minimum 
value of φζ is

r•Ω(p)
r•Ω(p)2 − |ζ − p|2 <

1
δΩ(p)

and hence

κΩ(p, 1) � min
t∈[0,1]

φζ(t) = r•Ω(p)
r•Ω(p)2 − |ζ − p|2 <

1
δΩ(p) .

Hence, the inequalities in (4.7) hold in either sub-case.
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Obviously, if ζ = p then the second inequality is an equality (because r•Ω(p) = δΩ(p)). Suppose, conversely, 
that the second inequality is an equality, and suppose, to get a contradiction, that ζ �= p. Then it must 
be that r•Ω(p) > δΩ(p). Because, if not, then r•Ω(p) = δΩ(p), whence we have ζ = p, as argued in sub-case 
(a). This is a contradiction. So δΩ(ζ) = r•Ω(p) > δΩ(p) and therefore we can consider φζ and appeal to 
Lemma 4.2 to get that the minimum value of φζ is

r•Ω(p)
r•Ω(p)2 − |ζ − p|2 <

1
δΩ(p) .

But that is a contradiction to the hypothesis, and this completes the proof of (3).
Now suppose that the condition in (4) holds. In this case r•Ω(p) > δΩ(p). The reasoning is similar to what 

occurs above. Therefore we can again consider φζ, appeal to Lemma 4.2, and, reasoning as in the previous 
case, get that the minimum of φζ is an upper bound for κΩ(p, 1). But in this case, since the condition 
satisfied by ζ is a restatement of the condition occurring in (3) of Lemma 4.2, the minimum is precisely 
the expression on the right-hand side of (4.8). That the latter is strictly smaller than 1/δΩ(p) follows from 
part (4) of Lemma 4.2. �
5. Proof of Theorem 1.2

Before we proceed with our proof, we point out that its basic idea is inspired by the proof of Bernal-
González [1], but with one significant departure. This departure is the use of a refined estimate for kD1 as 
discussed in Section 3.

Proof. Let

D1(r) := {z ∈ D1 | dist(z,Dc
1) � r}

for every r > 0 sufficiently small. Note that if D2 = Cm, then the conclusion of the theorem is trivially 
true. Therefore, we suppose that D2 � Cm. Then, by Lemma 3.4,

kD2(b, w) � 1
2 log

(
dist(b,Dc

2)
dist(w,Dc

2)

)
∀w ∈ D2.

Let φ be as in the statement of Theorem 1.2. Then, for every z ∈ D1(r),

kD2(b, φ(z)) � 1
2 log

(
dist(b,Dc

2)
dist(φ(z), Dc

2)

)
. (5.1)

Let us now suppose that ∂D1 has lower than C2 regularity. In that case we have

kD2(b, φ(z)) � kD1(a, z) � C(a) + α

2 log
(

1
dist(z,Dc

1)

)
. (5.2)

The second inequality follows from Lemma 3.2. Therefore, by (5.1), the above inequality, and the fact that 
z ∈ D1(r),

1
2 log

(
dist(b,Dc

2)
dist(φ(z), Dc

2)

)
� C(a) + α

2 log
(

1
r

)
.

After exponentiating and a couple of computations, we get
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dist(φ(z), Dc
2) � Cdist(b,Dc

2)rα, (5.3)

where C = e−2C(a). Since z ∈ D1(r) was arbitrary, the above inequality completes the proof under the 
assumption that ∂D1 has lower than C2 regularity. In this case, α, as obtained by our argument, is greater 
than 1.

If ∂D1 is C2-smooth, then, by Lemma 3.3, we may take α = 1 in (5.2). Every subsequent step of the 
argument goes through, and we arrive at the conclusion of Theorem 1.2 with α = 1. This completes the 
proof. �
6. Proof of Theorem 1.4

Proof. For convenience we first define

g := z �→ p + (z/‖ξ‖)ξ : D(ξ) → D. (6.1)

We note that

S•(p, ξ) =
{
p + (z/‖ξ‖)ξ | z ∈ S(p, ξ)

}
, (6.2)

where

S(p, ξ) := {z ∈ D(ξ) | 0 ∈ D(z, r•(p, ξ)) and D(z, r•(p, ξ)) ⊆ D(ξ)}.

The definition of r•(p, ξ) tells us that, in the language of Proposition 4.3, r•(p, ξ) = r•D(ξ)(0). We see from 
the above that S(p, ξ) is nothing but S•

D(ξ)(0). Therefore, by Proposition 4.3, S(p, ξ) is a non-empty compact 
convex subset of D(ξ) and there is a unique point z0 of S(p, ξ) such that

|z0| = dist(0, S(p, ξ)). (6.3)

Then (6.2) implies that S•(p, ξ) is also a non-empty compact convex subset of D ∩ (p + C ξ). Let q(ξ) :=
p + z0

ξ
‖ξ‖ . Then of course q(ξ) ∈ S•(p, ξ) and

‖q(ξ) − p‖ = |z0| = dist(0, S(p, ξ)) = dist(p, S•(p, ξ)).

The last equality holds because g preserves Euclidean distances. The uniqueness of q(ξ) is also clear from 
the corresponding uniqueness of z0. We note that

‖q(ξ) − p‖ = |z0| =: α,

that

r
(
p + (z/‖ξ‖)ξ, ξ

)
= δD(ξ)(z) ∀ z ∈ D(ξ)

in the notation of Proposition 4.3, and that

β = r•(p, ξ) − r(p, ξ) = r•D(ξ)(0) − δD(ξ)(0) = δD(ξ)(z0) − δD(ξ)(0),

where the α and β above also equal the quantities denoted by the same symbols in Proposition 4.3 with 
Ω := D(ξ), p := 0 and ζ := z0. (We note that the third equality above comes from the last sentence of the 
first paragraph of the proof of Proposition 4.3.)
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Now suppose that the condition in (2) of Theorem 1.4 holds. By the above observations, we can invoke 
Part (3) of Proposition 4.3 to get

κD(ξ)(0, 1) �
r•D(ξ)(0)

r•D(ξ)(0)2 − |z0|2
= r•(p, ξ)

r•(p, ξ)2 − ‖q(ξ) − p‖2 .

By the metric-decreasing property of holomorphic mappings,

κD

(
p,

ξ

‖ξ‖
)

= κD(g(0), g′(0) 1) � κD(ξ)(0, 1) � r•(p, ξ)
r•(p, ξ)2 − ‖q(ξ) − p‖2 .

Now, using the homogeneity of κD(p, ·), we get (1.6). We also note that, by Proposition 4.3,

r•D(ξ)(0)
r•D(ξ)(0)2 − |z0|2

<
1

δD(ξ)(0) ,

which translates to

r•(p, ξ)
r•(p, ξ)2 − ‖q(ξ) − p‖2 <

1
r(p, ξ)

if z0 �= 0, i.e., the upper bound obtained is strictly smaller than ‖ξ‖/r(p, ξ) if q(ξ) �= p.
Now suppose that the condition in (3) of Theorem 1.4 holds. This time we can invoke Part (4) of 

Proposition 4.3 and the inequality κD(p, ξ/‖ξ‖) � κD(ξ)(0, 1) to get— by our observation above about 
the quantities α and β — the bound (1.7). In this case the bound obtained is in fact strictly smaller that 
‖ξ‖/r(p, ξ). This completes the proof of the theorem. �
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