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We make a connection between the structure of the bidisc and a distinguished 
subgroup of its automorphism group. The automorphism group of the bidisc, as 
we know, is of dimension six and acts transitively. We observe that it contains 
a subgroup that is isomorphic to the automorphism group of the open unit disc 
and this subgroup partitions the bidisc into a complex curve and a family of 
strongly pseudo-convex hypersurfaces that are non-spherical as CR-manifolds. Our 
work reverses this process and shows that any 2-dimensional Kobayashi-hyperbolic 
manifold whose automorphism group (which is known, from the general theory, to 
be a Lie group) has a 3-dimensional subgroup that is non-solvable (as a Lie group) 
and that acts on the manifold to produce a collection of orbits possessing essentially 
the characteristics of the concretely known collection of orbits mentioned above, is 
biholomorphic to the bidisc.
The distinguished subgroup is interesting in its own right. It turns out that if we 
consider any subdomain of the bidisc that is a union of a proper sub-collection 
of the collection of orbits mentioned above, then the automorphism group of this 
subdomain can be expressed very simply in terms of this distinguished subgroup.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with presenting a characterization of the bidisc. Namely, we will pick out the 
bidisc from among all 2-dimensional Kobayashi-hyperbolic complex manifolds by making some assumptions 
about the automorphism group of such a manifold and about its action on the manifold.

There has been work—see [13]—characterizing the bidisc by picking it out from among all bounded 
domains in C2 by making some extrinsic assumptions about the action of the automorphism group of 
the domain on the domain (the assumptions are extrinsic in that they deal with the convergence of certain 
sequences to boundary points). In our work, we will only make intrinsic assumptions about the automorphism 
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group and its action on the manifold. Our work is heavily dependent on the seminal work [8], in which all 
2-dimensional Kobayashi-hyperbolic complex manifolds with (real) 3-dimensional automorphism group have 
been classified. The current work is also an outgrowth of the earlier work [2] of the two present authors 
(joint with T. Bhattacharyya).

The bidisc (along with the Euclidean unit ball in C2) is a pre-eminent model domain that has been 
studied intensively since the earliest days of several complex variables. It is, therefore, of interest to have 
characterizations of it. Roughly speaking, our main result says that any 2-dimensional Kobayashi-hyperbolic 
complex manifold whose automorphism group (which is known to be a Lie group) is assumed to have a 
certain non-solvable Lie subgroup under the action of which all the orbits, except only one, are assumed to be 
strongly pseudoconvex hypersurfaces, and the sole remaining orbit is assumed to be a complex curve, must 
be biholomorphic to the bidisc if one makes the further assumption that these hypersurfaces are of a specific 
type. To be more precise, we make the assumption that these hypersurfaces are CR-equivalent to certain 
standard hypersurfaces that occur in E. Cartan’s famous classification of connected homogeneous strongly 
pseudoconvex 3-dimensional CR manifolds [3] (see also [6]). Equivalently, we make the assumption that 
the hypersurfaces are CR-equivalent to certain hypersurfaces (see (2.2) and Proposition 2.1) one obtains 
when a particular distinguished subgroup (see (2.1)) of Aut(D2) acts on D2. Along the way, we also obtain 
characterizations of some distinguished sub-domains of D2 (see Theorem 2.3).

A noteworthy feature of our work is that we only make assumptions about some subgroup of the auto-
morphism group of the initially arbitrary manifold that we start out with. To the best of our knowledge, 
this is a new approach.

The plan of this work is as follows: in Section 2, we introduce the distinguished subgroup of Aut(D2)
and the distinguished sub-domains of D2 mentioned above, and connect them to certain model domains 
exhibited in [8] and their automorphism groups. After that we investigate the action of some subgroups of 
Aut(B2) on B2, where B2 denotes the Euclidean unit ball in C2 (this is needed for the proof of our main 
theorem). Finally, in Section 3, we prove our main result characterizing D2.

2. Preliminary results

2.1. Some domains in D2 and their automorphism groups

We start with D2 and its automorphism group which is given by

Aut(D2) = {(ϕ1 × ϕ2), (ϕ1 × ϕ2) ◦ σ : ϕ1, ϕ2 ∈ Aut(D)},

where (ϕ1 ×ϕ2)(z1, z2) = (ϕ1(z1), ϕ2(z2)) and σ(z1, z2) = (z2, z1). This can be found in [12]. In [2], a closed 
subgroup of Aut(D2) has been identified and its action on D2 has been observed. The subgroup is

GD = {Φϕ : ϕ ∈ Aut(D)}, (2.1)

where Φϕ(z1, z2) = (ϕ(z1), ϕ(z2)). This group does not act transitively and its orbits are

Fa =
{

(z1, z2) ∈ D2 :
∣∣∣ z1 − z2

1 − z1z2

∣∣∣ = a
}
, a ∈ [0, 1). (2.2)

From [2] we know that F0 is a complex curve and Fa is a strongly pseudoconvex hypersurface for each 
a ∈ (0, 1).

In [5] and [8], the author listed some collections of domains which are given by

D(2)
s,t ={(z1, z2, z3) ∈ C3 : s < |z1|2 + |z2|2 − |z3|2 < t, z2

1 + z2
2 − z2

3 = 1, (2.3)
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Im(z2(z1 + z3)) > 0}, 1 ≤ s < t ≤ ∞

and

D(2)
s ={(1 : z1 : z2 : z3) ∈ CP3 : s < |z1|2 + |z2|2 − |z3|2, z2

1 + z2
2 − z2

3 = 1, (2.4)

Im(z2(z1 + z3)) > 0} ∪ {(0 : z1 : z2 : z3) ∈ CP 3 : z2
1 + z2

2 − z2
3 = 0,

Im(z2(z1 + z3)) > 0}, 1 < s.

Here O(2) = {(0 : z1 : z2 : z3) ∈ CP3 : z2
1 + z2

2 − z2
3 = 0, Im(z2(z1 + z3)) > 0} is a complex curve and we 

have D(2)
s = D(2)

s,∞ ∪ O(2).
The connected components containing the identity of the automorphism groups of the domains (2.3) and 

(2.4) are all equal to SO2,1(R)0 (the connected component of SO2,1(R) containing the identity—hereinafter, 
for K an arbitrary topological group, we shall use K0 to denote the connected component of K containing 
the identity) with the following action (

z1
z2
z3

)
�→ A

(
z1
z2
z3

)
(2.5)

and ⎛⎜⎝ s
z1
z2
z3

⎞⎟⎠ �→
(

1 0
0 A

)⎛⎜⎝ s
z1
z2
z3

⎞⎟⎠ , s = 0, 1, (2.6)

respectively. We write R(1) to denote this group (SO2,1(R)0 with the action described above). The R(1)-
orbits of (2.3) are given by

η(2)
α =

{
(z1, z2, z3) ∈ D(2)

s,t : |z1|2 + |z2|2 − |z3|2 =
√

α + 1
2

}
, s < α < t. (2.7)

It is known from [6] that the hypersurfaces η(2)
α are strongly pseudoconvex, non-spherical and pairwise 

CR-nonequivalent. The R(1)-orbits of (2.4) are η(2)
α , α > s, together with the complex curve O(2).

Now we shall connect these domains D(2)
s,t and D(2)

s with domains in D2. Consider the map J : D2 → CP3

defined by

J(z, w) = (z − w : 1 − zw : i(1 + zw) : −i(z + w)). (2.8)

In the article [2], the authors showed that J is a biholomorphism from D2 onto D(2)
1 . It maps D = {(z, z) :

z ∈ D} onto O(2). From this map we derive H : D2 −D → C3 defined by

H(z, w) =
(1 − zw

z − w
, i

1 + zw

z − w
,−i

z + w

z − w

)
. (2.9)

Proposition 2.1. H maps D2 −D onto D(2)
1,∞ biholomorphically. Moreover, for any a ∈ (0, 1), H gives rise 

to a CR-isomorphism between Fa and η(2)
α where α = 8

a4 − 8
a2 + 1.

Proof. The proof that H is a biholomorphism between D2−D and D(2)
1,∞ follows from the observations that 

the J above is a biholomorphism that maps D = {(z, z) : z ∈ D} onto O(2) and that D(2)
1 = D(2)

1,∞ ∪ O(2). 
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The remaining part of the proposition follows from the observation that H maps Fa onto η(2)
α , where α and 

a are related as described above. �
The maps J and H open up a way to finding distinguished subdomains of D2 and D2 − D. For r, s, t

with 1 ≤ s < t ≤ ∞ and 1 < r, consider the domains J−1(D(2)
r ) and H−1(D(2)

s,t ) in D2. From the definitions 
of D(2)

r and D(2)
s,t , it is easy to see that

H−1(D(2)
s,t ) =

{
(z1, z2) ∈ D2 :

√
2

t + 1 <
∣∣∣ z1 − z2

1 − z1z2

∣∣∣ < √
2

s + 1

}

and

J−1(D(2)
r ) =

{
(z1, z2) ∈ D2 :

∣∣∣ z1 − z2

1 − z1z2

∣∣∣ < √
2

r + 1

}
. (2.10)

So it is natural to introduce domains D2
r and D2

s,t defined by

D2
r =

{
(z1, z2) ∈ D2 :

∣∣∣ z1 − z2

1 − z1z2

∣∣∣ < r
}
, r ∈ (0, 1)

and

D2
s,t =

{
(z1, z2) ∈ D2 : s <

∣∣∣ z1 − z2

1 − z1z2

∣∣∣ < t
}
, 0 ≤ s < t ≤ 1.

Note that D2
1 = D2, if we define D2

1 in a manner similar to the above. Now we shall show that Aut(D2
r) and 

Aut(D2
s,t) can be expressed in terms of GD. Before going into that result, we want to focus on a few facts.

(1) H−1R(1)H = GD and H−1(−I3)H = σ, where σ(z1, z2) = (z2, z1).
To see this, recall (look at the sentence immediately following (2.6)) that R(1) is isomorphic to 
SO2,1(R)0. We know from [8] that R(1) = G(D(2)

1,∞) (the latter denotes the connected identity-component 
of Aut(D(2)

1,∞)—hereinafter, for M an arbitrary hyperbolic complex manifold, we shall use G(M) to de-
note Aut(M)0). Therefore R(1) is a 3-dimensional Lie group. Since H is a biholomorphism between D2

0,1

and D(2)
1,∞, G(D2

0,1) = H−1R(1)H is also a 3-dimensional Lie group. Recall the subgroup GD (see (2.1)) 
of Aut(D2). It is clearly a subgroup of G(D2

0,1) and a 3-dimensional Lie group in its own right. But 
we already know that G(D2

0,1) is 3-dimensional. Therefore, GD is a connected 3-dimensional subgroup 
of the connected 3-dimensional Lie group H−1R(1)H and, consequently, coincides with the latter, i.e., 
H−1R(1)H = GD (an open connected subgroup K of a Lie group G is equal to the connected component 
of G containing the identity, i.e., K = G0—see, for example, Lemma 7.12 on page 156 of [10]). The fact 
that H−1(−I3)H = σ follows easily from the definition of H.

(2) AutCR(Fa) = {Φ, Φ ◦ σ : Φ ∈ GD} for all a ∈ (0, 1).
This is a consequence of the fact that for any α ∈ (1, ∞), AutCR(η(2)

α ) is generated by R(1) and −I3
(see page 669 of [8]), and Fa = H−1(η(2)

α ) for suitable a and α.
(3) For every holomorphic automorphism Φ of D2

r (resp., D2
s,t) and for every a ∈ (0, r) (resp., (s, t)), Φ

maps Fa bijectively to itself and hence Φ|Fa
is a CR-automorphism of Fa.

Theorem 2.2. For r, s, t with r < 1 and 0 ≤ s < t ≤ 1, Aut(D2
r) and Aut(D2

s,t) are equal to {Φ, Φ ◦ σ : Φ ∈
GD}, where σ(z1, z2) = (z2, z1).
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Proof. We start with an arbitrary automorphism Φ of D2
r (resp., D2

s,t). We fix a ∈ (0, r) (resp., (s, t)) 
arbitrarily. By the three observations above, we know that there exists ϕ ∈ Aut(D) such that Φ|Fa

= Φϕ or 
Φϕ ◦ σ. Now note that Φϕ (or Φϕ ◦ σ, as the case may be) is itself an automorphism of D2

r (resp., D2
s,t). At 

any rate, Φ and Φϕ (or Φϕ◦σ, as the case may be) are both holomorphic maps on D2
r (resp., D2

s,t) that agree 
on the subset Fa, which is a real 3-dimensional submanifold of D2

r (resp., D2
s,t). We know, from Corollary 

2 of Section 2.6 of Chapter 1 of [4], that if the set of points of D2
r (resp., D2

s,t) at which two holomorphic 
functions defined thereon agree (which is necessarily an analytic subset of D2

r (resp., D2
s,t)) has Hausdorff 

dimension greater than 2 ×2 −2 = 2, then the two functions are identically equal. In our case, both the first 
and second component functions of Φ and Φϕ (or Φϕ ◦σ, as the case may be) agree on the subset Fa of D2

r

(resp., D2
s,t), which has Hausdorff dimension 3, being a real 3-dimensional submanifold of D2

r (resp., D2
s,t). 

Therefore, both the pairs are identically equal to one another, and this implies that Φ = Φϕ (or Φϕ ◦ σ, as 
the case may be). This completes the proof. �
Remark. Another proof of Theorem 2.2 can be given using the properties of the symmetrized bidisc. We 
shall give a sketch of the proof.

(1) It suffices to show that if Φ ∈ Aut(D2
s,t) (or Aut(D2

r)) and Φ|Fa
= id for some a > 0, then Φ = id. (The 

reason why this suffices is that, as we know, if we fix a ∈ (s, t) (resp., (0, r)) arbitrarily, then there exists 
ϕ ∈ Aut(D) such that Φ|Fa

= Φϕ or Φϕ ◦σ. Therefore we can consider the automorphism Φϕ ◦Φ−1 (or 
(Φϕ ◦ σ) ◦ Φ−1, as the case may be) and attempt to conclude that it is equal to the identity.)

(2) Define sym : D2 → G by sym(z1, z2) = (z1 + z2, z1z2), Gr = sym(D2
r ) and Gs,t = sym(D2

s,t). Using 
the map in Theorem 3.2 in [2] and properties stated in [8] (page 654–655), we see that Aut(Gr) =
Aut(Gs,t) = {Hϕ : ϕ ∈ Aut(D)} where Hϕ ◦ sym(z1, z2) = sym(ϕ(z1), ϕ(z2)).

(3) Define ΨΦ : Gs,t → C2 by ΨΦ ◦ sym(z1, z2) = sym ◦ Φ(z1, z2). It is easy to see that ΨΦ is well-defined 
and is a holomorphic automorphism of Gs,t (respectively, of Gr, when defined similarly). So ΨΦ = Hϕ

for some ϕ ∈ Aut(D). Using Φ|Fa
= id, we get ϕ = id ∈ Aut(D).

(4) So for any (z1, z2), Φ(z1, z2) is either (z1, z2) or (z2, z1). A simple argument involving sequences shows 
that Φ = id in a neighborhood of (a, 0) and this will imply the conclusion of Theorem 2.2.

In our article, we shall use the domains D2
r to prove our main result. By [8], it is a hyperbolic 2-manifold 

with 3-dimensional automorphism group. Our next result is a characterization of D2
r .

Theorem 2.3. Suppose M is a hyperbolic 2-manifold with 3-dimensional automorphism group. Let G(M) :=
Aut(M)0. Suppose that M has an orbit under the action of G(M) that is a complex curve, that there exist 
an a ∈ (0, 1) and a 3-dimensional orbit O of M under G(M) that is CR-equivalent to Fa and that all 
remaining orbits are strongly pseudoconvex real hypersurfaces. Then there exists an r ∈ (0, 1) such that M
is biholomorphic to D2

r .

Proof. Our theorem follows, with very little effort, from Isaev’s work. It follows from the proof of [8, 
Theorem 5.1] that if M is a hyperbolic 2-manifold with 3-dimensional automorphism group having an 
orbit under the action of G(M) that is a complex curve, such that all its remaining orbits are strongly 
pseudoconvex (3-dimensional) real hypersurfaces and such that one of these 3-dimensional orbits is CR-
equivalent to η(2)

α for some α ∈ (1, ∞), then M is biholomorphic to D(2)
s for some s ∈ (1, ∞). But we have 

already seen that η(2)
α is CR-equivalent to Fa, where

α = 8 − 8 + 1,

a4 a2
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and D(2)
s is biholomorphic with some D2

r . Therefore, we can use the observation that we stated above (see 
(2.10)) to conclude that M is biholomorphic to D2

r for some r < 1. �
Now suppose that, with M as above, we have the following:

(1) Exactly one G(M)-orbit is a complex curve.
(2) The remaining orbits are strongly pseudoconvex real hypersurfaces.
(3) There exist a sequence {an} ⊂ (0, 1) converging to 1, and, for each n, an orbit On in M which is 

CR-equivalent to Fan
.

Under these conditions, M cannot be biholomorphic with D2
r for any r ∈ (0, 1). The reason behind this 

claim is the following: If b1, b2 ∈ (0, 1) are two distinct numbers, then Fb1 and Fb2 are not CR-equivalent 
(they are CR-equivalent to η(2)

β1
and η(2)

β2
, respectively, where

βj = 8
b4j

− 8
b2j

+ 1, j = 1, 2;

hence β1 
= β2 and so, by the remark made immediately after (2.7), Fb1 and Fb2 are CR-nonequivalent.) 
If M is biholomorphic with D2

r for some r ∈ (0, 1), then, considering the action of GD on D2
r and the orbits 

of D2
r under GD, we are led to conclude that there exists an orbit of D2

r under GD that is CR-equivalent 
to some Fan

, where an ∈ (r, 1). But, taking into consideration the CR-nonequivalence of the Fa’s, this is 
impossible.

2.2. Action of SU1,1(C) and O2,1(R) on the open unit ball

Let B2 denote the open Euclidean unit ball in C2. Its automorphism group has a connection with the 
Lie group SU2,1(C), which acts on B2 in the following way(

a1 a2 a3
b1 b2 b3
c1 c2 c3

)
· (u, v) = (a1u + a2v + a3, b1u + b2v + b3)

c1u + c2v + c3
.

In this subsection we consider O2,1(R) and a copy of SU1,1(C) as subgroups of SU2,1(C) and study their 
actions on B2.

First we investigate the action of SU1,1(C). Consider

(
α β
β α

)
�→

⎛⎝1 0 0
0 α β
0 β α

⎞⎠
where |α|2 − |β|2 = 1. This is an embedding of SU1,1(C) in SU2,1(C). We shall identify SU1,1(C) with the 
subgroup {⎛⎝1 0 0

0 α β
0 β α

⎞⎠ : α, β ∈ C, |α|2 − |β|2 = 1
}

of SU2,1(C) and observe its action on B2.

Proposition 2.4. The SU1,1(C)-orbits of B2 are given by SU1,1(C) · (t, 0), t ∈ [0, 1). SU1,1(C) · (0, 0) is a 
complex curve and, for t ∈ (0, 1), SU1,1(C) · (t, 0) is CR-equivalent with the sphere, that is, the topological 
boundary of B2.
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Proof. Let (u, v) ∈ B2. For

A =

⎛⎝1 0 0
0 α β
0 β α

⎞⎠ , we have A · (u, v) = (u, αv + β)
βv + α

.

Note that v ∈ D and αv+β

βv+α
is the action of 

(
α β
β α

)
on v. Since the action of SU1,1(C) (considered as 2 × 2

matrices) is transitive on D, a little calculation gives that with proper choice of A, we can find a t ∈ [0, 1)
such that A · (u, v) = (t, 0). If for a fixed (u, v), there are two elements of (0, 1), say t1, t2, such that (t1, 0)
and (t2, 0) both belong to the SU1,1(C)-orbit of (u, v), then that means that there exists an element of 
SU1,1(C) carrying (t1, 0) to (t2, 0), hence, from the above, that there exist complex numbers α, β such that 
(t1,β)

α = (t2, 0) with |α|2 − |β|2 = 1. This gives us that β = 0. If t1 = 0, then t2 = 0. When at least one of 
t1, t2 is positive, the other one is also positive, we get α = 1 and we also get t1 = t2. Thus the t above is 
unique and consequently the SU1,1(C)-orbits of B2 are SU1,1(C) · (t, 0), t ∈ [0, 1).

Now consider SU1,1(C) · (0, 0) = {(0, βα ) : α, β ∈ C, |α|2 − |β|2 = 1}. With a little effort we can show that 
the map f : D → C2 sending z to (0, z) maps D biholomorphically onto SU1,1(C) · (0, 0).

Focusing on the remaining orbits, we find that for t ∈ (0, 1), SU1,1(C) ·(t, 0) = {(u, v) ∈ B2 : |u|2+t2|v|2 =
t2}. Now it is easy to see that the biholomorphic map gt : C2 → C2 sending (z, w) to ( zt , w) maps 
SU1,1(C) · (t, 0) onto S3, the topological boundary of B2. This completes the proof. �

Now let us focus on the action of O2,1(R). By O2,1(R), we mean the subgroup {A ∈ SU2,1(C) : A ∈
M3(R), AtI2,1A = I2,1} of SU2,1(C). We only take a look at the O2,1(R)-orbit of (0, 0).

Proposition 2.5. The O2,1(R)-orbit of (0, 0) is totally real.

Proof. If A =
(
a1 a2 a3
b1 b2 b3
c1 c2 c3

)
∈ O2,1(R), then A · (0, 0) = (a3

c3
, b3c3 ). So O2,1(R) · (0, 0) ⊂ {(u, v) ∈ B2 :

Im(u) = 0 = Im(v)}. Suppose (z, w) ∈ B2 with Im(z) = 0 = Im(w). If (z, w) = (0, 0), then we have 
(z, w) = I3 · (0, 0). If (z, w) 
= (0, 0), then consider the matrix

B =
(−αw kz γz

αz kw γw
0 k(z2 + w2) γ

)

where α = 1√
z2+w2 , k = 1√

(z2+w2)(1−z2−w2) and γ = 1√
1−z2−w2 . It is easy to see that B ∈ O2,1(R) and 

B · (0, 0) = (z, w). Hence we get that O2,1(R) · (0, 0) = {(u, v) ∈ B2 : Im(u) = 0 = Im(v)}. This proves the 
proposition. �
3. Main result

Before stating our main result, we want to remind the reader that given a 2-dimensional hyperbolic man-
ifold M with a 3-dimensional subgroup G of Aut(M)0, there are only a few possibilities for dimRAut(M)0. 
Obviously, dimRAut(M)0 ≥ 3. It is a standard result (see, for example, Section 1.2 of [9] and, in particular, 
equation (1.3) therein) that for an n-dimensional hyperbolic complex manifold M , dimRAut(M) ≤ n2 +2n. 
In our case, this gives us: dimRAut(M) ≤ 8. Furthermore, we may conclude, using Corollary 2.5 of [9], that 
dimRAut(M) 
= 5 (see also Theorem 2.2 therein). Finally, we may conclude, using Theorem 1.3 of [9], that 
dimRAut(M) 
= 7. This shows that dimRAut(M), or, equivalently, dimRAut(M)0 is one of 3, 4, 6 and 8. 
When dimRAut(M)0 = 8, M is biholomorphic with B2 (see, for example, Theorem 1.1 of [9]) and when 



8 A. Biswas, A. Maitra / J. Math. Anal. Appl. 504 (2021) 125434
dimRAut(M)0 = 6, M is biholomorphic with D2 (see, for example, Corollary 2.5 of [9]). The cases of 3 and 
4 are more complicated and can be found in [7] and [8]. We shall show that under certain conditions, found 
by observing the action of GD on D2, the only possibility is dimRAut(M)0 = 6.

Theorem 3.1. Let M be a hyperbolic 2-manifold with a 3-dimensional non-solvable subgroup G of G(M) =
Aut(M)0. Suppose that, under the action of G, the following conditions are met.

(1) Exactly one G-orbit is a complex curve.
(2) The remaining G-orbits are strongly pseudoconvex real hypersurfaces.
(3) There exist a sequence {an} ⊂ (0, 1) converging to 1 and, for each n, a G-orbit On in M which is 

CR-equivalent to Fan
.

Then M is biholomorphic with the bidisc D2.

Proof. All we have to do is to discard the cases dimRG(M) = 3, 4, 8. Once this is done, it will follow that 
M is biholomorphic with D2, because, as mentioned above, it is known that the bidisc is, up to biholomor-
phic equivalence, the unique 2-dimensional hyperbolic complex manifold with 6-dimensional automorphism 
group.

Case (i): dimRG(M) 
= 3.
Assume, to get a contradiction, that dimRG(M) = 3. Then using Theorem 2.3, we conclude that M is 
biholomorphic with D2

r for some r ∈ (0, 1). But the discussion following the proof of Theorem 2.3 forbids 
this possibility. So dimRG(M) 
= 3.

Case (ii): dimRG(M) 
= 4.
Assume, to get a contradiction, that dimRG(M) = 4. Then M cannot be homogeneous, otherwise by 
Theorem 1.1 in [7], M must be of dimension 3 or 4. By Proposition 2.1 in [7], each G(M)-orbit is either 
a real hypersurface or a complex curve. Clearly our manifold M contains at most one complex curve 
and some real 3-dimensional hypersurfaces as G(M)-orbits. The G(M)-orbits have a connection with the 
G-orbits. If OG(M)(p) and OG(p) denote the G(M)-orbit and the G-orbit of p ∈ M , respectively, then 
for any q ∈ OG(M)(p), we must have OG(q) ⊂ OG(M)(p). Also q ∈ OG(q) for all q ∈ M . Consequently 
OG(M)(p) =

⋃
q∈OG(M)(p) OG(q) for all p ∈ M . This implies, in particular, that there is a 3-dimensional 

G(M)-orbit O that contains a G-orbit Õ CR-equivalent to some Fa. Since both O and Õ are 3-dimensional, 
it follows that Õ is an open subset of O. Now by Proposition 2.1 in [7], O is either Levi flat or spherical 
while each Fam

is a 3-dimensional hypersurface which is strongly pseudoconvex and non-spherical (recall, 
from Proposition 2.1, that Fam

is CR-isomorphic to η(2)
α for some α, and η(2)

α is strongly pseudoconvex and 
non-spherical—see [3], [6], [8]). In particular, O, which is either Levi-flat or spherical, has a non-empty open 
subset, Õ, which is strongly pseudoconvex and non-spherical. This is a contradiction. Hence dimRG(M) 
= 4.

Case (iii): dimRG(M) 
= 8.
Assume, to get a contradiction, that dimRG(M) = 8. Then, by Theorem 1.1 of [9], M is biholomorphic 
to B2. Therefore it follows from the hypotheses that G(B2) has a certain non-solvable 3-dimensional Lie 
subgroup G that satisfies the following properties: (1) the orbits of B2 under G, except only one, are strongly 
pseudoconvex 3-dimensional real hypersurfaces and the sole remaining orbit is a complex curve, and (2) 
there exist an a ∈ (0, 1) and a 3-dimensional orbit of B2 under G that is CR-equivalent to Fa. Now the 
automorphism group of B2 is known (see Proposition 3, Section 7, Chapter 2 of [1]) to be

PSU2,1(C) = SU2,1(C)/K,
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where K = {λI3 | λ3 = 1}. The Lie algebra of G is, by our assumption, non-solvable. Now the conjugacy 
classes of all the Lie subgroups of SU2,1(C) have been determined in [11] and listed in Table II on page 1390 
of [11]. Our group G is (assumed to be isomorphic to) a Lie subgroup of SU2,1(C)/K and must, therefore, 
be of the form N/K, where N is some Lie subgroup of SU2,1(C). Thus N can be identified with a group 
of matrices that is a subgroup of SU2,1(C). Note that SU2,1(C) itself acts on B2, as we have discussed in 
subsection 2.2. Note further that N is a subgroup of SU2,1(C) containing K, and that the orbits of B2
under N are precisely the orbits of B2 under N/K (this is just a reflection of the general fact that if we 
take any two matrices A and B in SU2,1(C) such that there exists λ ∈ C such that B = λA, then (λ3 = 1) 
and for every z ∈ B2, A · z = B · z, where · denotes the action of SU2,1(C) on B2 that was discussed in 
subsection 2.2). Now N must belong to some conjugacy class appearing in the aforementioned table. Since 
G is isomorphic to N/K, and G is assumed to be non-solvable, N must be non-solvable as well. Therefore, 
from the table, we see that N must belong either to the conjugacy class of SU1,1(C) or to that of SU2(C)
or to that of O2,1(R) (that is, isomorphic to some embedded copy as we have discussed in subsection 2.2). 
It cannot belong to the conjugacy class of SU2(C), because, if it did, then G would be compact, which 
cannot be the case (by assumption, it acts on B2 to produce non-compact orbits—Fa is non-compact). 
Consequently, N must belong either to the conjugacy class of SU1,1(C) or to that of O2,1(R).

Suppose first that N belongs to the conjugacy class of SU1,1(C). Consider the orbits of B2 under N . It has 
been shown that the 3-dimensional orbits of B2 under SU1,1(C) are spherical hypersurfaces (Proposition 2.4). 
Our assumption implies that the orbits of B2 under N/K are, with one exception, strongly pseudoconvex 
hypersurfaces, that the sole remaining orbit is a complex curve, and that there exist a ∈ (0, 1) and a 
hypersurface orbit that is CR-equivalent to Fa. By the observation about the equality of the orbits of B2
under N and N/K, it follows that there exists an orbit O of B2 under N that is CR-equivalent to Fa for 
some a ∈ (0, 1). Now, since N belongs to the conjugacy class of SU1,1(C), it follows that O is the image of 
a spherical hypersurface in B2 under a holomorphic automorphism of B2 and hence is spherical itself. But 
that is a contradiction, because O is CR-equivalent to Fa, which is not spherical.

Suppose now that N belongs to the conjugacy class of O2,1(R). It has been shown that the orbit of (0, 0)
under O2,1(R) is a totally real 2-dimensional submanifold of B2 (Proposition 2.5). Consequently, among the 
orbits of B2 under N , there must exist a totally real 2-dimensional submanifold. But there does not, because, 
as above, it follows from our assumption about the orbits of B2 under N/K that the only 2-dimensional 
orbit of B2 under N is a complex curve.

Therefore, we invariably get a contradiction. This shows that dimRG(M) 
= 8.
Thus, dimRG(M) = 6, and this completes the proof. �
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