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ON THE CONTINUOUS EXTENSION OF KOBAYASHI

ISOMETRIES

ANWOY MAITRA

(Communicated by Filippo Bracci)

Abstract. We provide a sufficient condition for the continuous extension of
isometries for the Kobayashi distance between bounded convex domains in
complex Euclidean spaces having boundaries that are only slightly more reg-
ular than C1. This is a generalization of a recent result by A. Zimmer.

1. Introduction

In this paper, we provide a sufficient condition for the continuous extension to
Ω1 of isometries, with respect to the Kobayashi distances on Ω1 and Ω2, between
a pair of bounded convex domains Ω1 and Ω2 in complex Euclidean spaces (of not
necessarily the same dimension). In this setting it is well known that such isometries
do exist. A consequence of fundamental work by Lempert [9, 10] is that if Ω ⊂ Cn

is a bounded convex domain, then given a pair of distinct points z1, z2 ∈ Ω, there
exists a holomorphic map F : D → Ω that is an isometry with respect to the
Kobayashi distances on D and Ω and such that z1, z2 ∈ F (D). We call such a map
a complex geodesic of Ω through z1 and z2.

The question of whether a complex geodesic extends continuously to D is not
an easy one. The earliest result in this direction was given by Lempert [9], which
states that if Ω ⊂ Cn is strongly convex with Ck-smooth boundary, k � 2, then
every complex geodesic F : D → Ω extends to a Ck−2-smooth mapping on D (by
a C0-smooth mapping we mean a continuous one). Since then, there have been
a number of works dealing with the continuous (or smooth) extension of complex
geodesics; see [1, 2, 11, 15].

While Lempert’s result might suggest that the boundary regularity of the target
convex domain Ω controls the boundary behaviour of a complex geodesic of Ω, that
is not the case; see [8, Remark 1.8] and [2, Example 1.2]. The latter example shows
that there exist C∞-smoothly bounded convex domains having complex geodesics
that do not extend continuously to D. In view of this, the question of C0-extension
of Kobayashi isometries in general is certainly a challenging one.
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Before we state the main result of this paper, let us look at the motivations
behind it. Our chief motivation is the following recent result by Zimmer:

Result 1.1 (Zimmer [15, Theorem 2.18]). Let Ωj ⊂ Cnj , j = 1, 2, be bounded
convex domains with C1,α-smooth boundaries, where α ∈ (0, 1). Suppose that Ω2

is C-strictly convex. Let F : Ω1 → Ω2 be an isometric embedding with respect to

the Kobayashi distances. Then F extends to a continuous map F̃ : Ω1 → Ω2.

Recall that for a convex, C1-smoothly bounded domain Ω ⊂ Cn to be C-strictly
convex means that for every ξ ∈ ∂Ω,(

ξ + TC
ξ (∂Ω)

)
∩ Ω = {ξ},

where TC
ξ (∂Ω) denotes the complex tangent space to ∂Ω at ξ, given by Tξ(∂Ω) ∩

iTξ(∂Ω) and where we view Tξ(∂Ω) extrinsically as a real hyperplane in R2n ≡ Cn

(also see Section 3).
A close reading of the proof of the above result reveals that it actually establishes

a stronger result. Before we can state this result, we need to fix some pieces of
notation. The first set of notation pertains to the real category. For U ⊂ Rd an
open set and f : U → R a C1-smooth function, Df will denote the total derivative
of f ; it is a continuous mapping from U into L (Rd,R). For a vector v ∈ Rd with
‖v‖ = 1, Dv will denote the directional derivative in the direction of v.

In what follows, we shall identify Cn with R2n in the following manner:

Cn�z = (z1, . . . , zn) ←→ (Re(z1), Im(z1),Re(z2), Im(z2), . . . ,Re(zn), Im(zn))∈R2n.

We let J denote multiplication by i in Cn regarded as an R-linear map from Cn to
itself. In terms of the above identification,

J(x1, . . . , x2n) = (−x2, x1, . . . ,−x2n, x2n−1) ∀ (x1, . . . , x2n) ∈ R2n.

Given a ∈ Cn and r > 0, B(n)(a, r) will denote the open Euclidean ball in Cn with
centre a and radius r.

We are now in a position to state the above-mentioned result. In this result, for
any ξ ∈ ∂Ω, ηξ will denote the unit inward-pointing normal to ∂Ω at ξ.

Result 1.1′ (Follows from the proof of [15, Theorem 2.18]). Let Ωj ⊂ Cnj , j = 1, 2,
be bounded convex domains with C1-smooth boundaries. Suppose that there exist
a constant r > 0, an α ∈ (0, 1), and, for each j = 1, 2, a defining function ρj
for Ωj such that for each ξ ∈ ∂Ωj , the directional derivative DJ(ηξ)ρj is α-Hölder-

continuous on the ball B(nj)(ξ, r). If Ω2 is C-strictly convex, then every isometric
embedding F : Ω1 → Ω2 with respect to the Kobayashi distances extends to a

continuous map F̃ : Ω1 → Ω2.

If Ω is C1-smoothly bounded, ∂Ω � ξ �→ J(ηξ) is what is sometimes called the
complex-normal vector field on ∂Ω. The geometrical significance of the hypothesis
in the above result is as follows: one does not require ∂Ωj to be a C1,α-smooth
manifold, j = 1, 2, for the conclusion of Result 1.1 to hold true; it suffices to
control the behaviour of ∂Ω1 and ∂Ω2 in the complex-normal directions. As stated
earlier, the proof of Result 1.1′ follows from a careful reading of the proof of [15,
Theorem 2.18] (and we shall see the required ingredients in the proof of our main
theorem).

All of this raises the question whether the conclusion of the above results holds
true under even lower regularity of ∂Ωj , j = 1, 2. This question is also suggested
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by a related result in [2] in which certain convex domains with just C1-smooth
boundaries are considered (which we shall see below). This is the second motivation
for our result. But first, we need a definition.

Definition 1.2. We say that a Lebesgue-measurable function g : [0, ε0) → [0,∞),
where ε0 > 0, satisfies a Dini condition if∫ ε0

0

g(t)

t
dt < ∞.

Our main theorem (whose relation to Result 1.1, via Result 1.1′, is clear) is:

Theorem 1.3. Let Ωj ⊂ Cnj , j = 1, 2, be bounded convex domains with C1-smooth
boundaries. Suppose that there exist a constant r > 0 and, for each j = 1, 2, a
defining function ρj for Ωj such that for each ξ ∈ ∂Ωj , the directional derivative

DJ(ηξ)ρj has modulus of continuity ω on the ball B(nj)(ξ, r). Assume that ω satisfies
a Dini condition. If Ω2 is C-strictly convex, then every isometric embedding F :
Ω1 → Ω2 with respect to the Kobayashi distances extends to a continuous map

F̃ : Ω1 → Ω2.

In view of our discussion on complex geodesics above, we have the following
immediate corollary to Theorem 1.3:

Corollary 1.4. Let Ω ⊂ Cn satisfy the conditions on Ω2 of Theorem 1.3. Then
every complex geodesic of Ω extends continuously to D.

We note that there exist many functions on intervals of the form [0, ε0) that
satisfy a Dini condition but which are not α-Hölder-continuous for any α ∈ (0, 1);
examples are the functions

(1.1) fε(x) :=

⎧⎪⎪⎨⎪⎪⎩
1

| log x|1+ε
if x ∈ (0, 1),

0 if x = 0

for arbitrary ε > 0. While Theorem 1.3 generalizes Result 1.1, what is perhaps
more suggestive are the geometric insights that its proof reveals. Firstly, given
bounded convex domains Ω1 and Ω2 with C1-smooth boundaries, given an isometry
F : Ω1 → Ω2 with respect to the Kobayashi distances, and given any point ξ ∈ ∂Ω2,
how ∂Ω2 behaves in the complex-tangential directions is largely immaterial to the
existence of a continuous extension of F to Ω1, owing to adequate control on the
local geometry of ∂Ω2 at ξ conferred by C-strict convexity. Secondly, some elements
of our proof reveal a certain bound for the Kobayashi distance that might be of
independent interest. For greater clarity, Proposition 1.5 will present the above-
mentioned bound for a special case (see Proposition 4.6 later for the more general
result). We need a definition: we say that a domain Ω � Cn has C1,Dini boundary
if ∂Ω is, near each ξ ∈ ∂Ω, the graph (relative to a coordinate chart around ξ)
of a C1 function whose partial derivatives are Dini-continuous (i.e., have moduli of
continuity that satisfy a Dini condition). With this definition, we have:

Proposition 1.5. Let Ω ⊂ Cn be a bounded convex domain with C1,Dini boundary.
Let z0 ∈ Ω. Then, there exists a constant C > 0 such that

kΩ(z0, z) � C +
1

2
log

(
1

dist(z,Ωc)

)
∀z ∈ Ω.
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The above estimate is easy to deduce for domains with C2-smooth boundaries.
For domains with C1,α-smooth boundaries, it was established by Forstneric–Rosay
[5]. In view of (1.1), Proposition 1.5 applies to domains that are not covered by [5].

We now state the result from [2] alluded to above. To state it, we need, given
a bounded convex domain Ω ⊂ Cn with C1-smooth boundary, the notion of a
function that supports Ω from the outside. Roughly speaking, such a function is
a convex function Φ : (B(n−1)(0, r0), 0) → ([0,∞), 0) such that, for each ξ ∈ ∂Ω,
there exists a unitary change of coordinate (ξz1, . . . , ξzn) ≡ (ξz′, ξzn) centred at ξ
so that {ξzn = 0} = TC

ξ (∂Ω) and such that a small open patch of ∂Ω around ξ lies

on the convex side of the surface {(ξz′, ξzn) ∈ B(n−1)(0, r0)× D | Im(ξzn) = Φ(ξz′)}
(see [2, Definition 1.5]). Now, for an arbitrary α > 0, let Ψα : [0,∞) → [0,∞) be
defined by

Ψα(x) :=

{
exp(−1/xα) if x > 0,

0 if x = 0.

With these preparations, the result mentioned above is:

Result 1.6 (Bharali [2, Theorem 1.4]). Let Ω ⊂ Cn be a bounded convex domain
with C1-smooth boundary. Suppose Ω is supported from the outside by a function
of the form Φ(z′) := Ψα(‖z′‖), where 0 < α < 1. Then every complex geodesic of
Ω extends continuously to D.

The above result has recently been extended to certain convex domains with
non-smooth boundaries; see [3, Theorem 1.7]. The hypothesis of Result 1.6 is such
that it admits domains Ω having boundary points that are not of finite type. As
for the first four results in this section, their hypotheses manifestly cover the case
where the domains involved have boundary points of infinite type. This is relevant
because, by a result of Zimmer [14, Theorem 1.1]—given a bounded convex domain
Ω with C∞-smooth boundary and equipped with the Kobayashi distance kΩ —if ∂Ω
has points of infinite type, then (Ω, kΩ) is not Gromov hyperbolic. Thus, not only
is Theorem 1.3 (as is Result 1.1 or Result 1.1′) a result involving domains with
low boundary regularity, but it is one where (Ω1, kΩ1

), (Ω2, kΩ2
) are not necessarily

Gromov hyperbolic. That is, a very natural condition under which one may expect
continuous extension to Ω1 of Ω1 → Ω2 Kobayashi isometries is unavailable, and
this work is an inquiry into what other kinds of hypotheses suffice.

Results 1.6 and 1.1 both address the extension of complex geodesics and have
apparently similar hypotheses. But neither subsumes the other. Also note that
in Result 1.6 no constraints are placed on the way in which ∂Ω behaves in the
complex-normal directions, but some degree of control is required in the complex-
tangential directions. This is in stark contrast to Result 1.1 (or Result 1.1′) and to
our theorem. These together suggest the following:

Conjecture 1.7. Let Ω be a bounded convex domain that has C1-smooth boundary
and is C-strictly convex. Then every complex geodesic of Ω extends continuously
to D.

With the techniques currently known, this seems to be difficult to prove. Theo-
rem 1.3 may be seen as evidence in support of this conjecture.

Before closing this section, we must mention a recent result in a similar vein
by Bracci–Gaussier–Zimmer [4, Corollary 1.6]. This result concerns the continu-
ous extension of Ω1 → Ω2 Kobayashi quasi-isometries that are homeomorphisms.
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While this result involves no assumption on the boundary regularity of Ω1 or Ω2,
necessarily dim(Ω1) = dim(Ω2). Furthermore (Ω1, kΩ1

) is required to be Gromov
hyperbolic. Thus, in view of our remarks above, [4, Corollary 1.6] is quite different
from Theorem 1.3.

The plan of this paper is as follows: in Section 2, we collect some preliminary
results that are not immediately related to Theorem 1.3 but which will play a
crucial role in its proof. In Section 3, we collect three relevant facts about convex
domains in Cn. In Section 4, we prove the propositions that enable Result 1.1 to
be generalized to Theorem 1.3. The result of Zimmer that we generalize, which
leads to Theorem 1.3, is [15, Proposition 4.3]: our generalization is Proposition 4.5.
Finally, in Section 5, we provide the proof of Theorem 1.3. In all these sections,
‖ · ‖ will denote the Euclidean norm.

2. Technical preliminaries

In this section we present some results that play a supporting role in the proofs
of the main results in Section 4 and, therefore, of our main theorem. The first
result, by S.E. Warschawski, is the principal tool that enables us to deal with the
low regularity of ∂Ω1 and ∂Ω2 in Theorem 1.3.

To state this result, we need to fix some terminology. Given a rectifiable arc Γ
in C, we say that Γ has a a continuously turning tangent if there is a C1-smooth
diffeomorphism γ : I → Γ, where I is an interval. Note, in particular, that γ′ is non-
vanishing. Given that Γ has a continuously turning tangent, a tangent angle at any
point ζ ∈ Γ refers to the smaller of the two angles determined by the intersection of
TζΓ with a fixed line � in C. While different choices of � define different tangent-
angle functions on Γ, the difference between the tangent angles, determined by
some fixed �, at two points ζ1, ζ2 ∈ Γ depends only on ζ1 and ζ2 (and, of course,
on Γ), i.e., is independent of �. For this reason, in the following result, and in all
applications of it, we shall use the phrase “the tangent angle” without any further
comment. If Γ is a closed rectifiable Jordan curve in C, analogous observations can
be made about arc length. With these words, we can now state the following:

Result 2.1 ([13, Theorem 1]). Let C be a closed rectifiable Jordan curve in C and
let C have a continuously turning tangent in a C-open neighbourhood of a point
ζ0 ∈ C. Suppose that the tangent angle τ (s) as a function of arc length s has a
modulus of continuity ω at the point s0 corresponding to ζ0 —i.e., there exists a
constant σ > 0 such that

(2.1) |τ (s)− τ (s0)| � ω(|s− s0|) whenever |s− s0| � σ

—that satisfies the following condition:

(2.2)

∫ σ

0

ω(t)

t
dt < ∞.

Let f be a biholomorphic map of D onto the region D enclosed by C and let
ζ0 = f(z0). Then

lim
D�z→z0

f(z)− f(z0)

z − z0
=: f ′(z0)

exists, and
lim

S�z→z0
f ′(z) = f ′(z0)

for any Stolz angle S with vertex at z0. Furthermore, f ′(z0) 
= 0.

We refer the reader to [12, Chapter 1] for a definition of a Stolz angle in D.
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Remark 2.2. Note that since the ω appearing in the above result is a modulus
of continuity, it is a non-decreasing function on [0, σ] (and is continuous at 0).
For this reason, the integrand in (2.2) is Lebesgue measurable. Secondly, in the
statement of Result 2.1, we have tacitly used Carathéodory’s theorem to conclude
that, given that C is rectifiable, the map f : D → D in the above result extends to
a homeomorphism of D.

The following is an immediate corollary to the above result.

Corollary 2.3. In the set-up described in Result 2.1, if g denotes f−1, then

(2.3) L := lim
D�ζ→ζ0

g(ζ)− z0
ζ − ζ0

exists and is non-zero.

We will also need the following simple lemma involving moduli of continuity.

Lemma 2.4. Let f be a real-valued function defined on a ball B(n)(a, r) ⊂ Cn.
Then the modulus of continuity ω of f on B(n)(a, r) is sub-additive; i.e., for all
s, t ∈ [0, 2r) such that s+ t < 2r, ω(s+ t) � ω(s) + ω(t).

Proof. Suppose x, y ∈ B(n)(a, r) and ‖x − y‖ � s + t. If ‖x − y‖ � s, then
|f(x)− f(y)| � ω(s) � ω(s) + ω(t). Now suppose that ‖x− y‖ > s. Note that∣∣∣∣f(x)− f

(
x+ s

y − x

‖y − x‖

)∣∣∣∣ � ω(s)

and∣∣∣∣f (
x+ s

y − x

‖y − x‖

)
− f(y)

∣∣∣∣ = ∣∣∣∣f (
x+ s

y − x

‖y − x‖

)
− f

(
x+ ‖y − x‖ y − x

‖y − x‖

)∣∣∣∣
� ω(‖y − x‖ − s) � ω(t).

Consequently, by the triangle inequality, |f(y) − f(x)| � ω(s) + ω(t). Since x and
y were arbitrary points in B(n)(a, r) satisfying ‖x − y‖ � s + t, it follows that
ω(s+ t) � ω(s) + ω(t). �

3. Some facts about convex domains

In this section we record some facts about convex domains in Cn. The first two
were proved by Zimmer in [15]. All of them are needed in the proof of Theorem 1.3.
The first result concerns a lower bound for the Kobayashi distance on arbitrary
convex domains. First, some notation: in what follows, given a domain Ω ⊂ Cn, kΩ
will denote the Kobayashi pseudodistance on Ω, and κΩ will denote the Kobayashi
pseudometric on Ω.

Result 3.1 ([15, Lemma 4.2]). Let Ω � Cn be a convex domain and let H ⊂ Cn

be a complex affine hyperplane such that Ω ∩H = ∅. Then, for every z1, z2 ∈ Ω,

(3.1) kΩ(z1, z2) � 1

2

∣∣∣∣log(dist(z1, H)

dist(z2, H)

)∣∣∣∣ .
The next result is a sharper lower bound for the Kobayashi distance between

a pair of points in a bounded convex domain with C1-smooth boundary under an
additional assumption. At this point, we wish to state a key clarification about
our notation. Whenever Ω ⊂ Cn is a C1-smoothly bounded domain and ξ ∈ ∂Ω,
(ξ + TC

ξ (∂Ω)) will be understood to be a certain set in Cn. Tξ(∂Ω) will denote
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the real tangent space to ∂Ω at ξ viewed extrinsically, i.e., as a real hyperplane in
R2n ≡ Cn, taking into account that ∂Ω is C1-smoothly embedded in Cn. Then,

TC
ξ (∂Ω) := Tξ(∂Ω) ∩ iTξ(∂Ω),

with Tξ(∂Ω) being viewed extrinsically.

Result 3.2 ([15, Lemma 4.5]). Let Ω ⊂ Cn be a bounded convex domain with C1-
smooth boundary. Let ξ, ξ′ ∈ ∂Ω and suppose that ξ+TC

ξ (∂Ω) 
= ξ′+TC
ξ′(∂Ω). Then

there exist constants ε, C > 0 such that for every p ∈ Ω with dist(p, ξ+TC
ξ (∂Ω)) � ε

and every q ∈ Ω with dist(q, ξ′ + TC
ξ′(∂Ω)) � ε,

(3.2) kΩ(p, q) � 1

2
log

(
1

δΩ(p)

)
+

1

2
log

(
1

δΩ(q)

)
− C.

Here, for any z ∈ Ω, δΩ(z) := dist(z,Ωc).
The following result provides bounds for the Kobayashi metric on convex do-

mains.

Result 3.3 (Graham [6, Theorem 3]; also see [7]). Let Ω ⊂ Cn be a convex domain.

Given p ∈ Ω and v ∈ T
(1,0)
p Ω, we let rΩ(p, v) denote the supremum of the radii of

the disks centred at p, tangent to v, and included in Ω. Then

(3.3)
‖v‖

2rΩ(p, v)
� κΩ(p, v) � ‖v‖

rΩ(p, v)
.

4. Essential propositions

The goal of this section is to prove certain technical results that are essential
for extending the scope of an idea in [15] to the sorts of domains considered in
Theorem 1.3: specifically, that inward-pointing normals can be parametrized as
K-almost-geodesics for some K � 1. In [15], this relies on a construction by
Forstneric–Rosay in [5, Proposition 2.5] for estimating effectively the Kobayashi
distance close to the boundary of a domain Ω whose boundary is of class C1,α.

Definition 4.1 (Zimmer [15, Definition 3.2]). Let Ω ⊂ Cn be a bounded domain.
For K � 1, by a K-almost geodesic in Ω (with respect to the Kobayashi distance)
we mean a mapping σ : I → Ω, where I is an interval in R, such that

(1) |s− t| − log(K) � kΩ(σ(s), σ(t)) � |s− t|+ log(K) ∀ s, t ∈ I and
(2) kΩ(σ(s), σ(t)) � K|s− t| ∀ s, t ∈ I.

The Forstneric–Rosay estimate involves embedding a certain compact planar set
D with 0 ∈ ∂D into Ω so that its image osculates ∂Ω at the image of 0. Since
the domains considered in Theorem 1.3 need not necessarily have boundaries of
class C1,α, we must modify significantly the constructions in [5, Proposition 2.5],
starting with a class of planar domains better adapted to the domains Ω1 and Ω2

of Theorem 1.3.
Such a domain (which must contain 0 in its boundary) must have a defining func-

tion that is C1 near 0 whose derivative (while not necessarily α-Hölder-continuous
for any α ∈ (0, 1)) will have a modulus of continuity that satisfies a Dini condition.
To this end, with ω as in Theorem 1.3, we define the function h : (−2r, 2r) → [0,∞)
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as follows:

h(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ 0

t

ω(−y)dy if t < 0,

∫ t

0

ω(y)dy if t � 0.

The following properties of h are easily verified: h(0) = 0, h is strictly increasing
on [0, 2r) and strictly decreasing on (−2r, 0], and h′(0) = 0. Then, for α, τ > 0,
consider the domain

D(α, τ ) := {ζ = s+ it ∈ C | |t| < τ, αh(t) < s < τ}.

The following property of the domains D(α, τ ) is obvious from the definition: if
ζ = s+ it ∈ D(α, τ ), then |t| � h−1(s/α). Near 0, a defining function for D(α, τ ) is
�(s, t) := αh(t)− s. Its total derivative at the point (s, t), (D�)(s, t), with respect
to the standard basis of R2, is [

−1 αh′(t)
]
.

It is easily checked that the modulus of continuity of D� at 0 is αω: i.e., for every
t ∈ (−2r, 2r), ‖(D�)(s, t)− (D�)(0)‖ = αω(|t|).

We will use the following fact in our proof below: if w ∈ Cn, then J(w) is
orthogonal to w with respect to the standard real inner product on R2n ←→ Cn.
With this remark, we now state and prove the following proposition.

Proposition 4.2. Let Ω ⊂ Cn be a bounded convex domain having the properties
common to Ω1 and Ω2 as stated in Theorem 1.3. For ξ ∈ ∂Ω, let Ψξ : C → Cn

denote the C-affine map

Ψξ(ζ) := ξ + ζηξ ∀ ζ ∈ C.

Then there exist constants α, τ > 0 such that, for every ξ ∈ ∂Ω, Ψξ(D(α, τ )) ⊂ Ω.

Proof. We are given a C1 defining function ρ defined on a neighbourhood U of ∂Ω
and we are given an r > 0 such that, for every ξ ∈ ∂Ω, the directional derivative
DJ(ηξ)ρ has on B(n)(ξ, r) modulus of continuity ω. We shall identify L (R2n,R)

with R2n via the matrix representation of the elements of L (R2n,R) relative to the
standard basis of R2n. Since Dρ does not vanish on ∂Ω, there is anm > 0 such that,
for every ξ ∈ ∂Ω, ‖(Dρ)(ξ)‖ � m. Furthermore, if we choose a neighbourhood V
of ∂Ω in U such that V is a compact subset of U , then Dρ is uniformly continuous
on V . In particular, there is a δ0, 0 < δ0 < r, such that

(4.1) ‖(Dρ)(ξ)− (Dρ)(ξ′)‖ � m/2 ∀ ξ, ξ′ ∈ V such that ‖ξ − ξ′‖ � δ0.

Choose τ > 0 so small that
√
2τ < δ0; it then follows that

{s+ it ∈ C | |t| < τ, 0 < s < τ} ⊂ D(0, δ0).

Then, for any α > 0, D(α, τ ) ⊂ D(0, δ0). We fix a value of α � 1 so large that
2/α � m/4. We shall soon see the reason for this choice. We may also need to
shrink τ further. The precise value of τ that works will be presented below.

For the rest of the proof we fix ξ ∈ ∂Ω and ζ ∈ D(α, τ ). In what follows,
a + ib (a, b ∈ Rn) will, for simplicity of notation, denote either a complex vector
or the vector (a1, b1, . . . , an, bn) ∈ R2n, the intended meaning being clear from the
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context. By Taylor’s theorem and writing ζ = s+ it (and 〈· , ·〉 denoting the usual
inner product on R2n), we get

ρ(ξ + ζηξ) = ρ(ξ) + (Dρ)(ξ)(ζηξ) +

∫ 1

0

(
(Dρ)(ξ + xζηξ)− (Dρ)(ξ)

)
(ζηξ)dx

= s〈∇ρ(ξ), ηξ〉+ t〈∇ρ(ξ), J(ηξ)〉+ s

∫ 1

0

(
(Dρ)(ξ + xζηξ)− (Dρ)(ξ)

)
(ηξ)dx

+ t

∫ 1

0

(
(Dρ)(ξ + xζηξ)− (Dρ)(ξ)

)
(J(ηξ))dx [since ρ(ξ) = 0]

� −sm+ s

∫ 1

0

∣∣((Dρ)(ξ + xζηξ)− (Dρ)(ξ))(ηξ)
∣∣dx

+ |t|
∫ 1

0

∣∣(DJ(ηξ)ρ
)
(ξ + xζηξ)−

(
DJ(ηξ)ρ

)
(ξ)

∣∣dx [since J(ηξ) ⊥ ∇ρ(ξ)].

(4.2)

Since, for every ξ ∈ ∂Ω, every x ∈ [0, 1], and every ζ ∈ D(α, τ ), ‖(ξ + xζηξ)− ξ‖ =
x|ζ| < δ0,

‖(Dρ)(ξ + xζηξ)− (Dρ)(ξ)‖ � m

2
,

by (4.1). Therefore the second term on the right hand side of (4.2) is less than or
equal to sm/2. As for the third term, note that for every x ∈ [0, 1],∣∣(DJ(ηξ)ρ

)
(ξ + xζηξ)−

(
DJ(ηξ)ρ

)
(ξ)

∣∣ � ω(‖(ξ + xζηξ)− ξ‖) = ω(x|ζ|).

So the third term on the right hand side of (4.2) is less than or equal to

|t|
∫ 1

0

ω(x|ζ|)dx.

Therefore we get, from (4.2),

(4.3) ρ(ξ + ζηξ) � −sm+ (sm/2) + |t|
∫ 1

0

ω(x|ζ|)dx.

Since ζ ∈ D(α, τ ),

(4.4) |ζ| �
(
s2 + (h−1(s/α))2

)1/2
= h−1(s/α)

(
1 +

(
s

h−1(s/α)

)2)1/2

.

Since h′(0) = 0, we have limx→0+ x/h−1(x) = 0. Therefore, we can shrink τ so that

(4.5) x/h−1(x) � 1/α ∀x ∈ (0, τ ).

Now, from (4.4), the fact that 0 < s/α < τ (since s/α � s by our choice of α), and
(4.5), we have

1 +

(
s

h−1(s/α)

)2
= 1 + α2

(
s/α

h−1(s/α)

)2
� 2.

From the last inequality and (4.4),

|ζ| �
√
2h−1(s/α).
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Using the above in (4.3) we get that

ρ(ξ + ζηξ) � −(sm/2) + |t|
∫ 1

0

ω
(√

2xh−1(s/α)
)
dx

� −(sm/2) + h−1(s/α)

∫ 1

0

ω
(
2xh−1(s/α)

)
dx

� s

(
−m

2
+

2h−1(s/α)

s

∫ 1

0

ω
(
xh−1(s/α)

)
dx

)
= s

(
−m

2
+

2

s

∫ h−1(s/α)

0

ω(u)du

)
[by change of variables]

= s

(
−m

2
+

2

α

)
� −sm

4
< 0,

by the choice of α discussed above. We note here that the third inequality follows
from Lemma 2.4. Therefore, ξ + ζηξ ∈ Ω. Since ξ ∈ ∂Ω and ζ ∈ D(α, τ ) were
arbitrary, the proof is complete. �

The proof of Theorem 1.3, as we shall see, relies crucially on the conclusion of
Result 2.1, for the point z0 = 1, when applied to the domains D(α, τ ). We must
therefore verify that the hypotheses of that result hold for D(α, τ ). It is enough
to show that the modulus of continuity of the tangent angle to ∂D(α, τ ) near 0,
regarded as a function of arc length, satisfies a Dini condition. Before we do this,
we note the following elementary fact:

(4.6) | tan−1(x)| � |x| ∀x ∈ R.

We also note that given α and τ , a parametrization of ∂D(α, τ ) near 0 is given
by Φ := y �→ (αh(y), y) : [−ε0, ε0] → R2, where ε0 is a suitably small positive
quantity depending on α and τ . Therefore the tangent angle to ∂D(α, τ ) near 0,
as a function of y, is

(4.7) θ̂(y) = tan−1(αh′(y)) ∀ y ∈ [−ε0, ε0].

(In this instance, the line �, as introduced in the explanations preceding Result 2.1,
is the imaginary axis of C.) Now we present the following lemma.

Lemma 4.3. The tangent angle θ of ∂D(α, τ ) near 0, regarded as a function of arc
length, has a modulus of continuity that is dominated by αω (and therefore satisfies
a Dini condition).

Proof. First we determine the arc length as a function of y. We will reckon the
(signed) arc length s from 0 and such that s(x+ iy) < 0 for x+ iy ∈ ∂D(α, τ ) and
y < 0, and s(x + iy) > 0 for x + iy ∈ ∂D(α, τ ) and y > 0 (we are only interested
in the arc length near 0). Using the parametrization Φ referred to just prior to
(4.7), we see that the function that gives the arc length as a function of y, which
we denote by G, is

(4.8) G(y) =

∫ y

0

‖Φ′(t)‖dt =
∫ y

0

[
1 + α2ω(|t|)2

]1/2
dt

for all y ∈ (−ε0, ε0). Clearly,

(4.9) |G(y)| � |y| ∀ y ∈ (−ε0, ε0).
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Note that G is a strictly increasing odd function on (−ε0, ε0). So G−1 is a function
that is defined on (−G(ε0), G(ε0)) and is strictly increasing. Taking y = G−1(s),
s ∈ (−G(ε0), G(ε0)) in (4.9), we get

(4.10) |G−1(s)| � |s| ∀ s ∈ (−G(ε0), G(ε0)).

Now the function θ that gives the tangent angle as a function of arc length is

θ(s) = θ̂(G−1(s)) ∀ s ∈ (−G(ε0), G(ε0)).

Recall that |h′(y)| = ω(|y|) and ω is continuous at 0. Thus, we may suppose that
ε0 is so small that for every y ∈ (−ε0, ε0), αω(|y|) � 1. Therefore, for an arbitrary
s ∈ (−G(ε0), G(ε0)),

|θ(s)| = |θ̂(G−1(s))| =
∣∣tan−1

(
αh′(G−1(s))

)∣∣ [by (4.7)]

� α|h′(G−1(s))| [by (4.6)]

� αω(|s|) [by (4.10)].

This gives us the required result. �

Remark 4.4. The significance of Lemma 4.3 is as follows: for every α > 0, τ > 0,
the domain D(α, τ ) satisfies the hypotheses of Result 2.1 at 0 ∈ ∂D(α, τ ). Thus,
Corollary 2.3 holds.

We are now ready to state and prove a generalization of Proposition 4.3 in [15].
The generalization of the latter result alone suffices to yield a generalization of The-
orem 2.11 in [15], which is fundamental to establishing an extension-of-isometries
theorem.

Proposition 4.5. Let Ω be an open convex subset of Cn having the properties
possessed in common by Ω1 and Ω2 in the statement of Theorem 1.3. Then there
exist K, ε > 0 such that for every ξ ∈ ∂Ω,

(4.11) σξ := t �→ ξ + εe−2tηξ : [0,∞) → Ω

is a K-almost-geodesic.

Proof. Our proof will resemble, in essence, the proof of Proposition 4.3 in [15]. The
two proofs will differ in the key detail that we must work with the domains D(α, τ ),
which are adapted to the domain Ω under consideration.

By Proposition 4.2 there exist α, τ > 0 such that for every ξ ∈ ∂Ω, ξ +
D(α, τ )ηξ ⊂ Ω. As D(α, τ ) is a bounded open convex subset of C symmetric
about the real axis, there exists a biholomorphism g : D(α, τ ) → D such that
g
(
D(α, τ ) ∩ R

)
= D ∩ R. By Carathéodory’s theorem, g extends to a homeo-

morphism from D(α, τ ) to D. We may suppose, without loss of generality, that
g(0) = 1. By the remark following the proof of Lemma 4.3, we see that we can
apply Corollary 2.3 to g to conclude that

lim
D(α,τ)�z→0

g(z)− g(0)

z
= lim

D(α,τ)�z→0

g(z)− 1

z

exists (call it k) and is non-zero. Therefore k is a negative real number. Thus, there
exist constants ε > 0 and κ � 1 such that t ∈ D(α, τ ) whenever 0 < t � ε and

(4.12) 0 � 1− κt � g(t) � 1− κ−1t ∀ t : 0 < t � ε.
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Then for t1, t2 such that 0 < t1 < t2 � ε, we have

kD(α,τ)(t1, t2) = kD(g(t1), g(t2)) =
1

2
log

((
1 + g(t1)

)(
1− g(t2)

)(
1 + g(t2)

)(
1− g(t1)

))

� 1

2
log 2 +

1

2
log

(
1− g(t2)

1− g(t1)

)
� 1

2
log 2 + log(κ) +

1

2
log(t2/t1),

by (4.12). So for ξ ∈ ∂Ω and t, s ∈ [0,∞) arbitrary,

kΩ(σξ(t), σξ(s)) = kΩ
(
Ψξ

(
εe−2t

)
,Ψξ

(
εe−2s

))
� kD(α,τ)(εe

−2t, εe−2s)

� log(
√
2κ) + (1/2) log(εe−2t/εe−2s)

= log(
√
2κ) + (s− t),

provided s � t, where Ψξ is as introduced in Proposition 4.2. In general

(4.13) kΩ(σξ(t), σξ(s)) � log(
√
2κ) + |s− t| ∀ s, t ∈ [0,∞).

Consider the complex affine hyperplane ξ+TC
ξ (∂Ω) tangent to ∂Ω at ξ. Of course,

ξ+TC
ξ (∂Ω) is a complex affine supporting hyperplane for Ω at ξ. For t ∈ R arbitrary,

the distance of σξ(t) from ξ+TC
ξ (∂Ω) is clearly εe−2t. Consequently, by Result 3.1,

(4.14) kΩ(σξ(t), σξ(s)) � (1/2)| log(εe−2t/εe−2s)| = |s− t| ∀ s, t ∈ [0,∞).

By (4.13) and (4.14), each σξ is a (1, log(
√
2κ))-quasi-geodesic. It only remains to

prove the Lipschitz nature of σξ.
By the fact that the boundary of Ω is C1, we can, by shrinking ε if necessary,

ensure that for every ξ ∈ ∂Ω, ξ + Bεη
ξ ⊂ Ω, where

Bε := {ζ ∈ C | 0 < Re(ζ) < 2ε, |Im(ζ)| < Re(ζ)}.

Elementary two-dimensional geometry then shows that there is a C > 0 such that
for every ξ ∈ ∂Ω and every t ∈ [0,∞),

rΩ(σξ(t), σ
′
ξ(t)) � Cεe−2t.

(In fact, given that ξ+Bεη
ξ ⊂ Ω, C = 1/

√
2 would work.) Therefore, by Graham’s

estimate, i.e., Result 3.3, for every ξ ∈ ∂Ω and every t ∈ [0,∞),

κΩ(σξ(t), σ
′
ξ(t)) �

‖σ′
ξ(t)‖

rΩ(σξ(t), σ′
ξ(t))

� 2εe−2t

Cεe−2t
=

2

C
.

Consequently, for every ξ ∈ ∂Ω and every s, t ∈ [0,∞),

(4.15) kΩ(σξ(s), σξ(t)) � (2/C)|s− t|.

Therefore, by (4.13), (4.14), and (4.15), it follows that for every ξ ∈ ∂Ω, σξ is a

K-almost-geodesic, where K := max{
√
2κ, 2/C}. �
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An outcome of one half of our argument for Proposition 4.5 is the following:

Proposition 4.6. Let Ω ⊂ Cn be a bounded convex domain having the properties
common to Ω1 and Ω2 as in the statement of Theorem 1.3. Let z0 ∈ Ω. Then,
there exists a constant C > 0 such that

kΩ(z0, z) � C +
1

2
log

(
1

dist(z,Ωc)

)
∀z ∈ Ω.

Remark 4.7. Since the domain Ω in the statement of Proposition 1.5 is bounded,
whence ∂Ω is compact, it is easy to see that Proposition 1.5 is a special case of the
above.

Proof. We abbreviate dist(z,Ωc) to δΩ(z). From the argument leading up to (4.13)
in the proof of Proposition 4.5, we conclude that there exist constants ε > 0 and
K � 1 such that for every ξ ∈ ∂Ω and σξ as in that proposition,

(4.16) kΩ(σξ(t), σξ(s)) � |s− t|+ logK ∀s, t ∈ [0,∞).

By compactness, there exists a δ ∈ (0, ε) such that dist({σξ(0) | ξ ∈ ∂Ω},Ωc) �
δ. It suffices to show that there exists C > 0 such that for every z ∈ Ω with
δΩ(z) < δ, kΩ(z0, z) � C + 2−1 log(1/δΩ(z)). Let C ′ := supξ∈∂Ω kΩ(z0, σξ(0)).
So let z ∈ Ω with δΩ(z) < δ. Now fix a ξ ∈ ∂Ω such that ‖z − ξ‖ = δΩ(z).
Clearly, then, there exists t(z) ∈ (0,∞) such that z = σξ(t(z)). So kΩ(z0, z) �
kΩ(z0, σξ(0))+kΩ

(
σξ(0), σξ(t(z))

)
� C ′+t(z)+logK, by (4.16). Since, by definition

of σξ, δΩ(z) = εe−2t(z), a simple calculation shows that t(z) � 2−1 log(1/δΩ(z)).
Therefore kΩ(z0, z) � C + 2−1 log(1/δΩ(z)), where C := C ′ + logK. This gives the
desired conclusion. �

5. The proof of Theorem 1.3

The proof of Theorem 1.3 requires the following conclusions: if Ω ⊂ Cn is a
domain that has the properties possessed in common by Ω1 and Ω2 in the statement
of Theorem 1.3, then (we remind the reader that for ξ ∈ ∂Ω, the set (ξ + TC

ξ (∂Ω))

is as described in Section 3):

(1) If ξ ∈ ∂Ω and (pν)ν�1, (qμ)μ�1 are sequences in Ω converging to ξ, then

lim
ν,μ→∞

(pν |qμ)o = ∞.

(2) If ξ, ξ′ ∈ ∂Ω and (pν)ν�1, (qμ)μ�1 are sequences in Ω converging to ξ and
ξ′, respectively, such that

lim sup
ν,μ→∞

(pν |qμ)o = ∞,

then ξ + TC
ξ (∂Ω) = ξ′ + TC

ξ′(∂Ω).

In the above, (· | ·)o denotes the Gromov product relative to the Kobayashi distance
on Ω and with respect to an arbitrary but fixed base point o ∈ Ω. It is defined as

(x|y)o :=
1

2

(
kΩ(x, o) + kΩ(y, o)− kΩ(x, y)

)
.

The above conclusions have been demonstrated by Zimmer under the conditions
he states in [15, Theorem 4.1]. We observe that what has actually been established
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in [15, Theorem 4.1] is the following:

Proposition 5.1. Suppose Ω is a bounded open convex subset of Cn having C1-
smooth boundary. Suppose Ω possesses the property that there exist constants
ε > 0,K � 1 such that, for each ξ ∈ ∂Ω, the path

σξ := t �→ ξ + εe−2tηξ : [0,∞) → Ω

is a K-almost-geodesic. Then:

(1) If ξ ∈ ∂Ω and (pν)ν�1, (qμ)μ�1 are sequences in Ω converging to ξ, then

lim
ν,μ→∞

(pν |qμ)o = ∞.

(2) If ξ, ξ′ ∈ ∂Ω and (pν)ν�1, (qμ)μ�1 are sequences in Ω converging to ξ and
ξ′, respectively, such that

lim sup
ν,μ→∞

(pν |qμ)o = ∞,

then ξ + TC
ξ (∂Ω) = ξ′ + TC

ξ′(∂Ω).

The condition on ∂Ω in [15, Theorem 4.1] was required to obtain the prop-
erty concerning the paths {σξ | ξ ∈ ∂Ω} stated in Proposition 5.1. Other than
this, there is absolutely no difference between the proofs of [15, Theorem 4.1] and
Proposition 5.1. We therefore omit the proof of the latter.

Finally, we give the proof of Theorem 1.3.

Proof. First, we show that whenever ξ ∈ ∂Ω1, limz→ξ F (z) exists. Since F is an
isometry with respect to the Kobayashi distances, we see, from the definition of the
Gromov product above, that, for every z, w, o ∈ Ω1,

(z|w)o = (F (z)|F (w))F (o).

First note that if ξ ∈ ∂Ω1 and (zν)ν�1 is a sequence in Ω1 converging to ξ such

that (F (zν))ν�1 converges to some point ζ ∈ Ω2, then ζ ∈ ∂Ω2. The reason is that,
if we fix a point o ∈ Ω1 arbitrarily, we see that

lim
ν→∞

kΩ2
(F (zν), F (o)) = lim

ν→∞
kΩ1

(zν , o) = ∞,

by Lemma 3.1. Consequently, ζ = limν→∞ F (zν) must belong to ∂Ω2. Thus,
if ξ ∈ ∂Ω1 and (zν)ν�1, (wν)ν�1 are sequences in Ω1 converging to ξ such that

(F (zν))ν�1 and (F (wν))ν�1 converge to ζ1, ζ2 ∈ Ω2, respectively, then ζ1, ζ2 ∈ ∂Ω2.
Moreover,

lim
ν→∞

(F (zν)|F (wν))F (o) = lim
ν→∞

(zν |wν)o = ∞,

by (1) of Proposition 5.1 above. Consequently, by (2) of the same proposition,
ζ1 + TC

ζ1
(∂Ω2) = ζ2 + TC

ζ2
(∂Ω2). Therefore, since Ω2 is C-strictly convex, one

has ζ1 = ζ2. Since Ω2 is bounded so that any sequence in it has a convergent
subsequence, the above shows that limz→ξ F (z) exists.

Then define F̃ : Ω1 → Ω2 by letting F̃ equal F on Ω1 and by letting F̃ (ξ), for

ξ ∈ ∂Ω1, be limz→ξ F (z). It is routine to show that F̃ is continuous, in view of the
conclusions of the previous paragraph. This completes the proof. �
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