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Abstract
In this article, we study notions of visibility with respect to the Kobayashi distance for rela-
tively compact complex submanifolds in Euclidean spaces. We present a sufficient condition
for a domain to possess the visibility property relative to Kobayashi almost-geodesics intro-
duced by Bharali–Zimmer (we call this simply the visibility property). As an application,
we produce new classes of domains having this kind of visibility. Next, we introduce and
study the notion of visibility subspaces of relatively compact complex submanifolds. Using
this notion, we generalize to such submanifolds a recent result of Bracci–Nikolov–Thomas.
The utility of this generalization is demonstrated by proving a theorem on the continuous
extension of Kobayashi isometries. Finally, we prove a Wolff–Denjoy-type theorem that is
a generalization of recent results of this kind by Bharali–Zimmer and Bharali–Maitra and
that, owing to the new classes of domains mentioned, is a proper generalization. Along the
way, we note that what is needed for the proof of this sort of theorem to work is a form of
visibility that seems to be intermediate between what we are calling visibility and visibility
with respect to ordinary Kobayashi geodesics.
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1 Introduction and statement of main results

For a hyperbolic complex manifold M , the Kobayashi distance kM and the Kobayashi–
Royden pseudometric κM encapsulate many complex-geometric and function-theoretic
properties of M . Recall that kM is the integrated form of κM (see Result 2.1). This arti-
cle explores a particular aspect of the Kobayashi distance, namely, notions of visibility with
respect to real geodesics and almost-geodesics with respect to the Kobayashi distance (see
Definition 2.5 in Sect. 2). The two notions of visibility that we shall focus on originated in
the articles [2–4, 19], where these properties were studied for bounded domains in complex
Euclidean spaces. The motivation for the above two notions is to capture the negative-
curvature-type behaviour of the Kobayashi distance; see the introductions in [2, 3] for a
detailed discussion regarding this. In this article, we shall focus on the analogous properties
on bounded, connected, embedded complex submanifolds of Cd . Not only is this interesting
in its own right, but we shall see that it leads to some useful applications.

In what follows, M will always denote a bounded, connected, embedded complex sub-
manifold of Cd . We shall use ∂M to denote M \ M , the boundary of M calculated with
respect to M , which is a compact subset of Cd . For z ∈ M , we shall use δM (z) to denote
the Euclidean distance between z and ∂M . We now introduce the aforementioned notions of
visibility for M with respect to the Kobayashi distance kM .

Definition 1.1 Let M be as above. Fix λ ≥ 1, κ > 0. We say that M has the visibility
property with respect to (λ, κ)-almost-geodesics or that M is a (λ, κ)-visibility submanifold
if the following two properties hold true.

• Any two distinct points of M can be joined by a (λ, κ)-almost-geodesic.
• For every pair of points p �= q ∈ ∂M , there exist Cd -neighbourhoods V andW of p and

q , respectively, and a compact subset K of M such that V ∩ W = ∅ and such that every
(λ, κ)-almost-geodesic in M with initial point in V and terminal point in W intersects
K .

If M is a domain � ⊂ C
d that has the visibility property with respect to (λ, κ)-almost-

geodesics, then we say that M is a (λ, κ)-visibility domain. If M , as above, has the visibility
property with respect to (λ, κ)-almost-geodesics for every λ ≥ 1 and κ > 0, then we shall
say that M is a visibility submanifold. If M has the visibility property with respect to (1, κ)-
almost-geodesics for all κ > 0, then we shall say that M is a weak visibility submanifold.
Finally, we shall say that M is a geodesic visibility submanifold if (M, kM ) is a complete
distance space and M satisfies the second property above in the definition of (λ, κ)-visibility
submanifolds with “(λ, κ)-almost-geodesic” replaced by “real Kobayashi geodesic”.

Given M as above, a λ ≥ 1 and a κ > 0, it is not clear whether, given two distinct points
in M , there is a (λ, κ)-almost-geodesic joining them. When M = �, a bounded domain
in C

d , this was proved by Bharali–Zimmer [3, Proposition 4.4]. That this is the case for a
general M , as above, is the content of Theorem 2.8 in Sect. 2. In the case where (M, kM ) is
complete, any two points in M can be joined by a real geodesic (see Remark 2.6). Therefore,
the definitions above are not vacuous.We also mention that for bounded domains the concept
of visibility has been studied in the articles [2, 3]. The concept of geodesic visibility in the
context of (bounded) domains� for which (�, k�) is complete has been studied in the recent
article [4].

We now turn our attention to visibility domains. In [3], it was shown that a large class of
domains, called Goldilocks domains, possesses the visibility property. Since we shall refer
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Notions of visibility with respect to the Kobayashi distance...

to them several times in this work, let us introduce them here. For this, we give the following
definition. Given M as above and given an open set U ⊂ C

d such that U ∩ ∂M �= ∅, we
define, for all r > 0,

MM,U (r) ..= sup

{
1

κM (z; v)
| z ∈ U ∩ M : δM (z) ≤ r and v ∈ T (1,0)

z M : ‖v‖ = 1

}
,

(1.1)

where ‖ ·‖ denotes the Euclidean norm and T (1,0)
z M denotes the complex tangent space to M

at z. We abbreviateMM,Cd toMM . Note that, in particular, we can take M to be a bounded
domain in C

d .

Definition 1.2 A bounded domain � ⊂ C
d is called a Goldilocks domain if

(1) for some (hence any) ε > 0 we have∫ ε

0

1

r
M� (r) dr < ∞, and

(2) for each z0 ∈ �, there exist constants C, α > 0 (that depend on z0) such that

k�(z0, z) ≤ C + α log
1

δ�(z)
∀z ∈ �.

Examples of Goldilocks domains are given in Sect. 2 of [3]. In particular, due to a result
of S.Cho [7], every bounded smooth pseudoconvex domain of finite D’Angelo type is a
Goldilocks domain. Later, Bharali–Maitra in [2] gave another criterion more permissive
than the one in Definition 1.2 for domains to possess the visibility property. Using this new
criterion, they also constructed domains, which they called caltrops, that possess the visibility
property but are not Goldilocks domains (more precisely, they do not satisfy condition (2)
in Definition 1.2). Based on the new understanding that the proof that a domain possesses
the visibility property can be localized to the boundary, we present a sufficient condition
more permissive than the one given in [2, Theorem 1.5] for a domain to possess the visibility
property. (Some time after this paper was announced, results were published (see [13, 16])
that have substantiated the assertion that visibility itself is a local property of the boundary.)

Theorem 1.3 (Extended visibility lemma) Let � be a bounded domain in C
d . Let E ⊂ ∂�

be a closed set such that for every p �= q ∈ ∂�, there exist p′ ∈ ∂� and r > 0 satisfying

(a) p ∈ B(p′, r) and q ∈ ∂�\B(p′, r);
(b) E ∩ ∂B(p′, r) = ∅.
Further, assume that for every q ′ ∈ ∂� \ E there exist a neighbourhood U of q ′, a point
z0 ∈ � and a C1-smooth strictly increasing function f : (0,∞) −→ R, with f (t) → ∞ as
t → ∞, such that

(1) for all z ∈ � ∩U, k�(z0, z) ≤ f (1/δ�(z));
(2) M�,U (r) → 0 as r → 0, and
(3) there exists r0 > 0 such that∫ r0

0

M�,U (r)

r2
f ′

(
1

r

)
dr < ∞.

Then � is a visibility domain.
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Here, B(p′, r) denotes the open Euclidean ball of radius r centred at p′ in C
d .

As an application of the above theorem, we prove the following corollary.

Corollary 1.4 Let � be a bounded domain in C
d . Suppose there exists a compact subset

E ⊂ ∂� such that Ea, the set of limit points of E, is a finite set and such that every
p ∈ ∂�\E is a smooth pseudoconvex boundary point of finite D’Angelo type. Then � is a
visibility domain.

Remark 1.5 A recent result of Bracci–Nikolov–Thomas says that every bounded convex
domainwith C∞-boundary is a geodesic visibility domain if all except finitelymany boundary
points of the domain are of finite D’Angelo type; see [4, Theorem 1.1]. This result can be
deduced fromCorollary 1.4. To see this, observe that, by the above corollary, any such domain
is a visibility domain, hence a weak visibility domain. Since bounded convex domains are
complete, it follows from Corollary 3.2 (see Sect. 3.2) that any such domain is a geodesic
visibility domain.

Remark 1.6 Some time after this paper was announced, Bharali–Zimmer generalized the
above theorem (see [1, Theorem 1.4]) by removing the assumption of the boundedness of
the domain and by allowing E to be any closed, totally disconnected subset of the boundary.

We turn our attention to geodesic visibility. We first remark that it is easy to come up
with examples where the complete distance space (M, kM ) does not have geodesic visibility
although there are subspaces of M that may have this property. This possibility motivated us
to introduce the following definitions. Before giving them, we clarify that, given a curve γ ,
wewill use the symbol γ itself to denote ran(γ ). However, if there is any danger of confusion,
we will use the unambiguous notation ran(γ ). We now give

Definition 1.7 Let M be a bounded, connected, embedded complex submanifold of Cd . A
subset S of M will be called a geodesic subspace if the following two conditions are satisfied.

• The distance space (S, kM |S×S) is Cauchy-complete.
• For any two distinct points in S, there exists a geodesic of the space (M, kM ) that passes

through those points and that is contained in S.

Definition 1.8 A geodesic subspace S is called a visibility subspace of M if for any p �=
q ∈ ∂a S := S \ S, there exist Cd -neighbourhoods U and V of p and q , respectively, and a
compact subset K of S such that U ∩ V = ∅ and such that, for every kM -geodesic γ in S
with initial point in U ∩ S and terminal point in V ∩ S, ran(γ ) ∩ K �= ∅.
In the case S = M , S being a visibility subspace is equivalent to S being a geodesic visi-
bility submanifold. Denoting the open unit disk in C by D, we ask the reader to note that
(Dn, kDn ), n ≥ 2, is not a geodesic visibility domain (this is easy to see). It is known (see [9])
that all the one-dimensional retracts of Dn , n ≥ 2, are given by V f

..= {(z, f (z)) : z ∈ D},
where f = ( f1, . . . , fn−1) : D −→ D

n−1 is a holomorphic map. It is not too difficult to
show that V f is a visibility subspace ofDn if each f j extends continuously toD. We sketch an
argument showing this at the beginning of Sect. 5. The converse is also true, namely, if V f is a
visibility subspace ofDn , each f j extends continuously to D. One can see this by noting that
V f is actually the image of a complex geodesic inDn , namely of z �→ (z, f (z)) : D −→ D

n ,
and then using Theorem 1.10 below.

We now present a result regarding the visibility of geodesic subspaces. This result is a
generalization of Theorem 3.3 in [4] to the context of geodesic subspaces. This theoremmight
seem overly abstract, but its utility will become apparent when we prove Theorem 1.10 and
its corollaries.
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Theorem 1.9 Let M be a bounded, connected, embedded complex submanifold of Cd . Let
S ⊂ M be a geodesic subspace of M such that

(
S, kM |S×S

)
is Gromov hyperbolic. Then

S is a visibility subspace of M if and only if the identity map idS : S −→ S extends to a

continuous surjective map îdS : SG −→ S, where S
G
denotes the Gromov compactification

of S with respect to kM |S×S. Moreover, this extended map is a homeomorphism if and only
if S has no geodesic loops in S.

We refer the reader to Bridson and Haefliger [5, Part III, Chapter 3] for the definition of the
Gromov compactification of a proper, geodesic distance space that is Gromov hyperbolic.
(Also see [4, Sect. 3] for a quick introduction to the same when the distance is the Kobayashi
distance.) We also refer the reader to Definition 5.2 in Sect. 5 for the definition of a geodesic
loop.

Using the above theorem, we prove a result concerning the continuous extension of
Kobayashi isometries.

Theorem 1.10 Suppose that M ⊂ C
m and N ⊂ C

n are bounded, connected, embed-
ded complex submanifolds and that (M, kM ) is a complete Gromov hyperbolic space. Let
f : M −→ N be an isometric embedding with respect to the Kobayashi distances and
suppose that S ..= f (M) (which is easily seen to be a geodesic subspace of N) is a visibility

subspace of N. Then f extends to a continuous map f̂ : MG −→ N, where M
G
denotes

the Gromov compactification of (M, kM ). Further, if S has no geodesic loops in S, then f̂ is

a homeomorphism from M
G
to S.

To illustrate the use of this theorem, we provide the following corollary, which partly
generalizes [12, Theorem 1.3]. But first a few words about two concepts that occur in the
statement of the corollary below.Thefirst one is that of theC1,Dini-smoothness of the boundary
of a domain in C

d . Since we are not going to make explicit use of C1,Dini-smoothness, we
shall not define it here. We direct the reader to Nikolov and Andreev [14] for the definition.
We note only that if a domain has C1,α-smooth boundary, where α > 0 is arbitrary, then
it automatically has C1,Dini-smooth boundary. In particular, all domains with Ck-smooth
boundary, where k ≥ 2, have C1,Dini-smooth boundary. The second concept is that ofC-strict
convexity, which we shall define in detail. Before giving the definition, we recall that, given a
domain � ⊂ C

d and a C1-smooth boundary point p of �, we can consider the (real) tangent
space Tp(∂�), wherewe view it extrinsically (i.e., as a real hyperplane inCd ), andwe can also
consider the complex tangent space to ∂� at p, given by Hp(∂�) ..= Tp(∂�) ∩ i

(
Tp(∂�)

)
.

Definition 1.11 Given a convex domain� ⊂ C
d with C1-smooth boundary, a boundary point

p of � is said to be a C-strictly convex boundary point if
(
p + Hp(∂�)

) ∩ � = {p}, where
Hp(∂�) is the complex tangent space to ∂� at p.

Corollary 1.12 Let� be a bounded convex domain inCd . Suppose that there exists a compact
subset S ⊂ ∂� such that Sa, the set of limit points of S, is a finite set, and such that every
p ∈ ∂�\S is a C1,Dini-smooth C-strictly convex boundary point. Let f : D −→ � be a
complex geodesic. Then f extends continuously to D.

The proof of the above corollary is given at the end of Sect. 5.
Finally, we move to a topic in the theory of iterations of a holomorphic self-map, where

the visibility property turns out to imply some interesting consequences. In this direction, we
begin with the following famous result due, independently, to Denjoy and Wolff [8, 18].
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Result 1.13 (Denjoy, Wolff) Let f : D −→ D be a holomorphic map. Either f has a unique
fixed point in D or there exists a point p ∈ ∂D such that f n(z) → p as n → ∞ for each
z ∈ D. In the latter case, convergence is uniform on compact subsets of D.

In several works, see e.g. [2, 3, 19], it is noted that similar phenomena regarding the
iteration of a holomorphic self-map of a bounded domain—as exhibited above in the case
of D—could be understood and explained by appealing to the visibility property of the
Kobayashi distance. Using this connection, Bharali–Maitra proved two Wolff–Denjoy-type
theorems [2, Theorems 1.8 and 1.9] for taut domains possessing the visibility property. Our
next result improves upon [2, Theorem 1.8] in two ways: our result is a Wolff–Denjoy-type
theorem for bounded, taut submanifolds ofCd on which onlyweak visibility is assumed. We
now present the result.

Theorem 1.14 Suppose that M is a bounded, connected, embedded complex submanifold of
C
d that satisfies the weak visibility property and is taut. Let F : M −→ M be a holomorphic

map. Then exactly one of the following holds:

(1) For every z ∈ M, {Fν(z) : ν ∈ Z+} is a relatively compact subset of M;
(2) there exists ξ ∈ ∂M such that, for every z ∈ M, limν→∞ Fν(z) = ξ , this convergence

being uniform on the compact subsets of M.

Remark 1.15 Themethod of our proof follows very closely that of [2, Theorem 1.8]. A crucial
tool that was employed in the latter proof (see [2, Theorem 4.3]) was a consequence of the
fact that limr→0 M�(r) = 0 for any taut visibility domain �. We prove an analogous result
(Theorem 6.4 in Sect. 6) for an M as above that is taut and that is only assumed to have
the weak visibility property. We emphasize that our theorem is particularly useful where the
given submanifold is not known to possess the visibility property, but is known to possess
the weak visibility property; see e.g. Example 4.1 in Sect. 4.

We now present the plan of this paper. In Sect. 2, we present preliminary material relating
to the Kobayashi distance and metric on relatively compact complex submanifolds of Cd

and prove that almost-geodesics joining arbitrary pairs of points exist on any such manifold.
In Sect. 3, we present the proof of Theorem 1.3 and then compare the various notions of
visibility that appear in this paper. In Sect. 4, we present two examples of domains that are
not Goldilocks domains but nevertheless possess some form of visibility. In Sect. 5, we study
basic properties of geodesic and visibility subspaces and then prove Theorems 1.9 and 1.10.
Finally, in Sect. 6, we prove Theorem 1.14 after proving some preliminary results, which are
interesting in their own right.

2 Preliminaries

In this section, we shall show the existence of (λ, κ)-almost-geodesics (with respect to the
Kobayashi distance) for a bounded, connected, embedded complex submanifold M of Cd .
Before we begin, we recall that the Kobayashi pseudometric κM is upper semicontinuous.
Therefore, for any continuous mapping γ : I −→ T (1,0)M , where I ⊂ R is an interval and
T (1,0)M denotes the complex tangent bundle of M ,

∫
I
κM (γ (t))dt
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makes sense (it may be ∞). Therefore, if we have an embedded complex submanifold M of
C
d and we have a piecewise C1 curve γ : [a, b] −→ M , where a, b ∈ R, a �= b, then∫ b

a
κM (γ (t), γ ′(t))dt < ∞. (2.1)

It also follows easily that if γ : [a, b] −→ M is an absolutely continuous curve, then
the Lebesgue integral of the function t �→ κM (γ (t), γ ′(t)) : [a, b] −→ [0,∞) is defined
(a priori, it could be ∞). Therefore, given γ : [a, b] −→ M , an absolutely continuous
curve, we let lM (γ ) denote the integral (2.1), the length of γ calculated using the Kobayashi
pseudometric. In what follows, the following result is relevant.

Result 2.1 Let M be a connected, embedded complex submanifold of Cd .

(1) [15, Theorem 1] For any z, w ∈ M, we have

kM (z, w) = inf
{
lM (γ ) | γ : [a, b] −→ M is piecewise C1,

with γ (a) = z and γ (b) = w} .

We can also take γ to be C1 above.
(2) [17, Theorem 3.1] For any z, w ∈ M, we have

kM (z, w) = inf
{
lM (γ ) | γ : [a, b] −→ M is absolutely continuous, with γ (a) = z and

γ (b) = w
}
.

We now present a result that is at the heart of the main result of this section, namely the
existence of (λ, κ)-almost-geodesics.

Proposition 2.2 Let M be a bounded, connected, embedded complex submanifold of Cd .
Then the following hold.

(1) There exists c > 0 such that

c ‖X‖ ≤ κM (z, X)

for all z ∈ M and X ∈ T (1,0)
z M.

(2) For any compact set K ⊂ M, there exists a constant C1 = C1(K ) > 0 so that

κM (z, X) ≤ C1 ‖X‖
for all z ∈ K and X ∈ T (1,0)

z M.

Remark 2.3 Part (1) together with Result 2.1 implies immediately that c ‖z−w‖ ≤ kM (z, w)

for all z, w ∈ M . Similarly, working with Part (2) above, one can show that for any compact
set K ⊂ M , there exists a constant C2 = C2(K ) > 0 such that kM (z, w) ≤ C2 ‖z − w‖ for
all z, w ∈ K .

Before we prove the proposition above, we shall state a result that will be used in the proof
of the proposition.

Result 2.4 [15, Proposition 2] Let M be a complex manifold of dimension n. If a compact
set K ⊂ M is contained in a coordinate polydisk, then there exists a constant C = C(K )

such that

κM (z, X) ≤ C‖X‖
for all z ∈ K, X ∈ T (1,0)

z M .
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A co-ordinate polydisk inM is essentially a co-ordinate chart (ψ,U , ψ(U )),U ⊂ M being
open, such that ψ(U ) is a polydisk in C

n .

Proof of Proposition 2.2 The proof of part (1) of the proposition is closely analogous to that
of part (1) of Bharali and Zimmer [3, Proposition 3.5], so we omit it here.

To establish part (2), we choose, for each z ∈ K , a coordinate polydisk Uz of M centred
at z. Let U ′

z ⊂ Uz be another coordinate polydisk centred at z that is relatively compact in
Uz for all z ∈ K . Since K is compact, there are finitely many elements of {U ′

z : z ∈ K }
that cover K . Let {U ′

zi }ki=1 be a finite cover, for some k ∈ Z+. Then, since U
′
zi is a compact

subset of Uzi for all i = 1, . . . , k, by Result 2.4,

κM (z, X) ≤ Ci‖X‖
for all z ∈ U ′

zi and X ∈ T (1,0)
z M , where Ci is a constant depending on the compact set U

′
zi .

Set C = C(K ) := max{Ci : i = 1, . . . , k}. Then
κM (z, X) ≤ C‖X‖

for all z ∈ K ⊂ ⋃
U ′
zi and X ∈ T (1,0)

z M . This shows that part (2) is true. ��
Definition 2.5 Let M ⊂ C

d be as before and let I ⊂ R be an interval. A real Kobayashi
geodesic is a map σ : I −→ M that is an isometric embedding, i.e., for any s, t ∈ I , we
have

|s − t | = kM (σ (s), σ (t)).

For λ ≥ 1 and κ ≥ 0, a curve σ : I −→ M is called a (λ, κ)-almost-geodesic if

(1) for all s, t ∈ I , (1/λ)|t − s| − κ ≤ kM
(
σ(t), σ (s)

) ≤ λ|t − s| + κ; and
(2) σ is absolutely continuous, so that σ ′(t) exists for almost every t ∈ I , and, for almost

every t ∈ I , κM (σ (t), σ ′(t)) ≤ λ.

A curve σ : I −→ M that is only required to satisfy condition (1) above is called a (λ, κ)-
quasi-geodesic. Note that such curves are not necessarily continuous.

Remark 2.6 It is a fact that given M as above, the distance space (M, kM ) is a length space
that is locally compact. It is a consequence of the Hopf–Rinow Theorem that if (M, kM ) is
(Cauchy-) complete, then given any two points p �= q ∈ M , there is a real geodesic connect-
ing them, i.e., a geodesicσ : [0, kM (p, q)] −→ M withσ(0) = p andσ(kM (p, q)) = q . It is
also a consequence of that theorem that when (M, kM ) is complete, it is proper, i.e., the closed
kM -balls are compact. The reader is referred to Bridson and Haefliger [5, Part I, Chapter 3]
for the definition of length space and for the statement of the Hopf–Rinow Theorem.

The following result is the consequence of part (1) of the above proposition. Its proof is
exactly the same as in [3, Proposition 4.3]. Therefore we omit it here.

Proposition 2.7 Let M ⊂ C
d be as before. Then for any λ ≥ 1, there exists C = C(λ) > 0

so that any (λ, κ)-almost-geodesic σ : I −→ M is C-Lipschitz with respect to the Euclidean
distance.

We are now ready to present the principal result of this section.

Theorem 2.8 Let M ⊂ C
d be as before. For any z, w ∈ M and any κ > 0, there exists a

(1, κ)-almost-geodesic σ : [a, b] −→ M such that σ(a) = z and σ(b) = w.
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Proof The proof is an adaptation of the proof of [3, Proposition 4.4]. Here we shall only
give the main idea of the proof. First, by part (1) of Result 2.1, there exists a C1 curve
γ : [0, 1] −→ M such that γ (0) = z, γ (1) = w, and such that

lM (γ ) < kM (z, w) + κ.

In addition, we can assume that γ ′(t) �= 0 for all t ∈ [0, 1]. Now, we consider the arc-length
function, namely,

f ..= t �→
∫ t

0
κM (γ (r), γ ′(r))dr : [0, 1] −→ [0,∞).

Using Proposition 2.2 above, we show that f is a bi-Lipschitz function, and consequently
strictly increasing. Let g : [0, lM (γ )] −→ [0, 1] be the inverse of f , that is, g( f (t)) = t for
all t ∈ [0, 1]. Consider the reparametrization of γ defined by σ := γ ◦ g. It is not difficult
to show that σ has unit-speed with respect to κM . This, in particular, implies that σ is an
(1, κ)-almost-geodesic. We refer the reader to Bharali and Zimmer [3, Proposition 4.4] for
more details. ��

Note that givenλ ≥ 1 and κ > 0, every (1, κ)-almost-geodesic is a (λ, κ)-almost-geodesic
too. Hence Theorem 2.8 implies the existence of (λ, κ)-almost-geodesics for any λ ≥ 1 and
κ > 0.

We end this section with the following simple result about (1, κ)-quasi-geodesics that
we shall need later in the article. This result is a direct consequence of the definition of
(1, κ)-quasi-geodesic together with the triangle inequality. So we omit the proof.

Result 2.9 Let M ⊂ C
d be as before. If σ : [a, b] −→ M is a (1, κ)-quasi-geodesic, then

for all t ∈ [a, b] we have
kM (σ (a), σ (b)) ≤ kM (σ (a), σ (t)) + kM (σ (t), σ (b)) ≤ kM (σ (a), σ (b)) + 3κ.

3 The Extended Visibility Lemma and relations amongst different types
of visibility

In this section, we present the proofs of Theorem 1.3 and Corollary 1.4. As hinted at in
the introduction, the proofs of these results demonstrate the fact that the proof that a given
domain or submanifold possesses the visibility property is localizable. This realization also
motivates us to reconsider geodesic visibility and its relation with weak visibility. This we
present in Sect. 3.2. Finally, in Sect. 3.3, we compare visibility and geodesic visibility.

3.1 The proofs of Theorem 1.3 and Corollary 1.4

The proof of Theorem 1.3 Suppose � is not a visibility domain. Then there exist λ ≥ 1 and
κ > 0 such that � does not have the visibility property with respect to (λ, κ)-almost-
geodesics. This implies that there exist p �= q ∈ ∂�, sequences (pn)n≥1 and (qn)n≥1 in �

that converge to p and q respectively, and a sequence (γn)n≥1 of (λ, κ)-almost-geodesics—
γn : [an, bn] −→ � with γn(an) = pn and γn(bn) = qn for all n ∈ Z+—such that
maxan≤t≤bn δ�(γn(t)) → 0 as n → ∞. By assumption, there exist p′ ∈ ∂� and r > 0
such that p ∈ B(p′, r), q ∈ ∂�\B(p′, r) and E ∩ ∂B(p′, r) = ∅. Since pn → p and
qn → q as n → ∞, we may assume that pn ∈ B(p′, r) and qn ∈ �\B(p′, r) for all n.
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Now, as γn is a continuous path from pn to qn , we have γn
([an, bn]) ∩ ∂B(p′, r) �= ∅.

Let αn ∈ (an, bn) be such that ξn
..= γn(αn) ∈ ∂B(p′, r), and passing to a subsequence if

necessary, we may assume that ξn → ξ ∈ ∂�∩ ∂B(p′, r) as n → ∞. Note that ξ ∈ ∂�\ E ;
hence, by assumption, there exists a neighbourhoodU of ξ such that conditions (1), (2) and
(3) occurring in the statement of Theorem 1.3 are satisfied. Now observe, sinceM�, V (r) ≤
M�,U (r) for any neighbourhood V ⊂ U of ξ , that, shrinkingU if necessary, wemay assume
that U ∩ (E ∪ {p, q}) = ∅ and that U satisfies the three conditions referred to above.

Let ε > 0 be such that B(ξ, ε) ⊂ U . Since ξn → ξ as n → ∞, we may assume (without
loss of generality) that ξn ∈ B(ξ, ε) for all n. Let

βn
..= inf

{
t ∈ [αn, bn] : γn(t) ∈ ∂B(ξ, ε)

}
.

By definition of βn and the fact that ∂B(ξ, ε) is closed, we have γn(βn) ∈ ∂B(ξ, ε) and
an < αn < βn < bn . For every n ∈ Z+, define σn

..= γn |[αn , βn ] : [αn, βn] −→ �. It
is easy to see that σn

([αn, βn]
) ⊂ B(ξ, ε) for all n. Note, since σn is a restriction of the

(λ, κ)-almost-geodesic γn , that σn is also a (λ, κ)-almost-geodesic, for all n. Moreover, we
have maxαn≤t≤βn δ�(σn(t)) → 0 as n → ∞. We observe that σn

([αn, βn]
) ⊂ � ∩ U for

all n ∈ Z+. From this point on, we argue exactly as in the proof of Theorem 1.5 in [2] (and
replace M� byM�,U in the latter proof) to get the result. ��

We now present the proof of Corollary 1.4.

The proof of Corollary 1.4 Toprove this corollarywe shall use theExtendedVisibilityLemma.
First, we shall show that given E as in the statement of Corollary 1.4 and p �= q ∈ ∂�,
conditions (a) and (b) in the statement of Theorem 1.3 are satisfied. To this end, consider
E0

..= Ea ∪{p, q}. Then, owing to the finiteness of E0, there exists an ε0 such that B(x, ε0)∩
B(x ′, ε0) = ∅ for all x �= x ′ ∈ E0. Now define

E1
..= (

E ∪ {p, q}) \ ( ∪x∈Ea B(x, ε0)
)
.

Note that E1 is a finite set disjoint from the compact set K := ∪x∈Ea B(x, ε0). Therefore
there exists an ε1 > 0 such that

• B(y, ε1) ∩ K = ∅ ∀y ∈ E1;
• B(y, ε1) ∩ B(y′, ε1) = ∅ ∀y �= y′ ∈ E1.

We now consider two cases:
Case 1. p /∈ K .
In this case if we take p′ = p and r = ε1 then both the conditions (a) and (b) in Theorem 1.3
are satisfied.
Case 2. p ∈ K .
There exists x0 ∈ Ea such that p ∈ B(x0, ε0). Consider the following finite collection of
mutually disjoint sets

B ..= {
B(x, ε0) : x ∈ Ea

} ∪ {
B(y, ε1) : y ∈ E1

}
.

Choose ε2 such that ε2 < dist(B1, B2)/4 for all B1 �= B2 ∈ B. Then it follows that C ..={
B(x, ε0+ε2) : x ∈ Ea

}∪{
B(y, ε1+ε2) : y ∈ E1

}
is a collection of mutually disjoint sets.

Now, if we take p′ = x0 and r = ε0 +ε2 then both the conditions (a) and (b) in Theorem 1.3
are satisfied.

Now take an arbitrary point q ′ ∈ ∂� \ E . By Cho [7, Theorem 1], there exist a neigh-
bourhood U of q ′ in C

d and positive numbers c, ε such that

∀z ∈ � ∩U , ∀v ∈ C
d , κ�(z, v) ≥ c

‖v‖
δ�(z)ε

.
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Therefore, for r > 0 sufficiently small, M�,U (r) ≤ (1/c)r ε .
It is also a straightforward consequence of Nikolov and Andreev [14, Theorem 7] that, by

shrinking U further if necessary, we may assume that there exist a point z0 ∈ � and a real
number A such that, putting f (x) ..= A + (1/2) log(x) ∀ x ∈ (0,∞), we have

∀z ∈ � ∩U , k�(z0, z) ≤ f
(
1/δ�(z)

)
.

We note that the estimate onM�,U (r) derived above also holds for this possibly smallerU .
It is now easy to check that all the conditions in Theorem 1.3 are satisfied. Consequently,
invoking Theorem 1.3, we conclude that � is a visibility domain. ��

3.2 Weak visibility and geodesic visibility

Before we present our first result, we need a definition. Given a distance space (X , d) and
an arbitrary but fixed point o ∈ X , the Gromov product is defined by

(x |y)o ..= (d(x, o) + d(y, o) − d(x, y))/2 ∀ x, y ∈ X .

We now present

Proposition 3.1 Suppose that M is a bounded, connected, embedded complex submanifold
of Cd .

(1) If M has the visibility property with respect to (1, κ)-almost-geodesics for some κ > 0,
then, for every p, q ∈ ∂M with p �= q, lim sup(x,y)→(p,q)(x |y)o < ∞.

(2) If, for every p, q ∈ ∂M with p �= q, lim sup(x,y)→(p,q)(x |y)o < ∞ and M is, in addition,
complete with respect to its Kobayashi distance, then M is a weak visibility submanifold.
Further, M is also a geodesic visibility submanifold.

Proof Proof of (1): the proof of this is very similar to that of Bracci et al. [4, Proposition 2.4].
The only difference is that where the authors of Bracci et al. [4] dealt with geodesics in
domains, we deal with almost-geodesics in complex submanifolds. Since, apart from this
difference and the consequent trivial modifications (in particular, the use of Result 2.9 to
provide a reverse triangle inequality for triples of points lying on an almost-geodesic), the
proofs are almost identical, we omit the proof.
Proof of (2): the proof of this is very similar to that of Bracci et al. [4, Proposition 2.5].
The only difference is the one pointed out in the proof of (1) above. Since, apart from this
difference, the consequent trivialmodifications, and the taking into account of certain obvious
facts that are straightforward analogues of corresponding facts used in the proof of Bracci et
al. [4, Proposition 2.5], the proofs are almost identical, we omit the proof. ��
Corollary 3.2 Let M be as in the above proposition, and suppose that it is complete with
respect to its Kobayashi distance. Then: M is a geodesic visibility submanifold ⇐⇒ M is
a weak visibility submanifold ⇐⇒ M is a (1, κ)-visibility submanifold for some κ > 0.

Proof The proof of this corollary follows from that of Proposition 3.1 once we note (see [4,
Proposition 2.5]) thatM being a geodesic visibility submanifold is equivalent to the finiteness
condition on the Gromov product appearing in Proposition 3.1 (work with real Kobayashi
geodesics instead of (1, κ)-almost-geodesics in Part (1) of Proposition 3.1). ��

The hypotheses of the next proposition resemble a few of those in Theorem 1.3. The
proposition provides a sufficient condition weaker than the one occurring in Proposition 3.1
for a submanifold to be a weak visibility submanifold.
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Proposition 3.3 Let M be as above. Let E ⊂ ∂M be a closed set such that for any p �=
q ∈ ∂M, there exist p′ ∈ ∂M and r > 0 such that p ∈ B(p′, r), q ∈ ∂M\B(p′, r)
and E ∩ ∂B(p′, r) = ∅. Suppose that for some (hence any) o ∈ M, kM (z, o) → ∞ as
z → ξ ∈ ∂M\E. Suppose also that

∀ p, q ∈ ∂M \ E with p �= q, lim sup
(x,y)→(p,q)

(x |y)o < ∞.

Then M is aweak visibility submanifold.When (M, kM ) is complete, M is a geodesic visibility
submanifold.

Proof The proof is similar to that of Bracci et al. [4, Proposition 2.5]. The ideas behind the
essential modifications required in the proof are the same as those occurring in the proof of
Theorem 1.3.

Assume, to get a contradiction, that there exists κ ≥ 0 such that M is not a (1, κ)-visibility
submanifold. Then there exist p, q ∈ ∂M , p �= q , sequences (pn)n≥1 and (qn)n≥1 in M such
that pn → p and qn → q as n → ∞, and a sequence (γn)n≥1 of (1, κ)-almost-geodesics,
γn : [an, bn] −→ M , such that γn(an) = pn , γn(bn) = qn for all n ∈ Z+ and such that

max
an≤t≤bn

δM (γn(t)) → 0 as n → ∞.

By hypothesis, there exist p′ ∈ ∂M and r > 0 such that p ∈ B(p′, r), q /∈ B(p′, r) and such
that ∂B(p′, r) ∩ E = ∅. We now use the arguments in the proof of Theorem 1.3 and those
needed to complete that of Proposition 3.1 (part (2)) sketched above to conclude that there
exist αn, βn , an < αn < βn < bn , a point ξ ∈ ∂B(p′, r) ∩ ∂M , a neighbourhood U of ξ ,
and tn ∈ [αn, βn] such thatU ∩ E = ∅ and such that, writing σn

..= γn |[αn ,βn ], ξn ..= σn(αn),
ηn

..= σn(βn) and wn
..= σn(tn), we have

• σn([αn, βn]) ⊂ U , ξn → ξ as n → ∞ and ηn converges to some point η �= ξ ofU ∩∂M ;
• for all n ∈ Z+, ‖ξn − wn‖ = ‖ηn − wn‖ and (wn)n≥1 converges to some point w of
U ∩ ∂M that satisfies ‖w − ξ‖ = ‖w − η‖.
Since ξ,w and η are all distinct points of ∂M\E and (ξn)n≥1, (wn)n≥1 and (ηn)n≥1

converge to ξ,w and η, respectively, therefore, by hypothesis, there exists C < ∞ such that

lim sup
n→∞

(ξn |wn)o ≤ C and lim sup
n→∞

(wn |ηn)o ≤ C .

Therefore we may, without loss of generality, suppose that there exists C < ∞ such that, for
all n ∈ Z+, 2(ξn |wn)o ≤ C and 2(wn |ηn)o ≤ C . From this point on, we argue exactly as in
the concluding part of the proof of Bracci et al. [4, Proposition 2.5] (replacing geodesics by
almost-geodesics and using Result 2.9 to obtain reverse triangle inequalities where needed)
to obtain the contradiction that lim supn→∞ kM (wn, o) < ∞ (recall that (wn)n≥1 converges
to w ∈ ∂M\E). This contradiction shows that M must be a weak visibility submanifold. It
is also clear (we simply work with geodesics instead of (1, κ)-almost-geodesics) that, when
(M, kM ) is complete, it is a geodesic visibility submanifold. ��
Remark 3.4 The proof above actually shows that under the hypotheses of the above proposi-
tion, M satisfies the visibility property with respect to continuous (1, κ)-quasi-geodesics.

Before we state the next corollary, we need two definitions. The first generalizes Defini-
tion 1.11 to the case of convex domains whose boundaries are not necessarily smooth (it is
not difficult to check that the following definition is consistent with Definition 1.11).
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Definition 3.5 Given a convex domain � ⊂ C
d , a boundary point p of � is said to be a

C-strictly convex boundary point if for every complex affine line L such that L ∩ � = ∅ and
such that p ∈ L , (L ∩ ∂�)\{p} = ∅.

We now give the following definition, which we have adopted from Bracci et al. [4] (see
[4, Definition 6.12]).

Definition 3.6 Given a domain � ⊂ C
d , a boundary point p of � is said to be locally C-

strictly convex if there exists a bounded C
d -neighbourhood U of p and a biholomorphism

� : U → �(U ) such that �(U ∩ �) is a convex domain and such that �(p) is a C-strictly
convex boundary point of �(U ∩ �).

We are now ready to state and prove the following corollary.

Corollary 3.7 Let� be a bounded domain inCd . Let E ⊂ ∂� be a closed set such that for any
p, q ∈ ∂�, p �= q, there exist p′ ∈ ∂� and r > 0 such that p ∈ B(p′, r), q ∈ ∂�\B(p′, r)
and E ∩ ∂B(p′, r) = ∅. Further, assume that every q ′ ∈ ∂�\E is both locally C-strictly
convex and a C1,Dini-smooth boundary point. Then � is a weak visibility domain. Further, if
(�, k�) is complete, � is a geodesic visibility domain.

Proof By Proposition 3.3, if we can show that k�(o, z) → ∞ as z tends to an arbitrary point
of ∂� \ E and that, for every p, q ∈ ∂�\E with p �= q , lim sup(x,y)→(p,q)(x |y)o < ∞, the
result will be proved.

Firstly note that, since every p ∈ ∂� \ E is locally C-strictly convex, every such point
is also, by Bracci et al. [4, Theorem 6.13], and to use the terminology of Bracci et al. [4,
Definition 6.1], a k-point. This means that

(*) ∀ neighbourhood W of p, lim inf z→p
(
k�(z,�\W ) − (1/2) log

(
1/δ�(z)

)
> −∞.

In particular, limz→p k�(o, z) = ∞. But (*) also implies (see [4, Theorem 6.13]) that, if
p and q are a pair of distinct points in ∂� \ E , then they satisfy the log-estimate (see [4,
Eq. (2.5)]), i.e., there exist neighbourhoods V and W of p and q , respectively, in C

d , and
C < ∞ such that, for every x ∈ V ∩ � and every y ∈ W ∩ �,

k�(x, y) ≥ (1/2) log
(
1/δ�(x)

) + (1/2) log
(
1/δ�(y)

) − C . (3.1)

Further, it is a straightforward consequence of Nikolov and Andreev [14, Theorem 7] that we
may choose V andW to be so small that there exists C1 < ∞ such that, for every x ∈ V ∩�

and every y ∈ W ∩ �,

k�(o, x) ≤ (1/2) log
(
1/δ�(x)

) + C1 and

k�(o, y) ≤ (1/2) log
(
1/δ�(y)

) + C1.

Adding the two inequalities above, we obtain:

k�(o, x) + k�(o, y) ≤ (1/2) log
(
1/δ�(x)

) + (1/2) log
(
1/δ�(y)

) + 2C1.

Combining the inequality above with (3.1), we get 2(x |y)o ≤ 2C1 + C . This shows that
lim sup(x,y)→(p,q)(x |y)o < ∞. By this, the fact that limz→p k�(o, z) = ∞, and the remark
made at the beginning of the proof, the proof of the corollary is complete. ��
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3.3 Comparison between visibility and geodesic visibility

Let M be a bounded, connected, embedded complex submanifold ofCd such that (M, kM ) is
complete. Suppose thatM possesses the visibility property.Then, in particular, it possesses the
weak visibility property. Corollary 3.2 then implies that M possesses the geodesic visibility
property.

The following proposition shows that in the presence ofGromovhyperbolicity of (M, kM ),
visibility and geodesic visibility are equivalent.

Proposition 3.8 Suppose that M is a bounded, connected, embedded complex submanifold
of Cd such that (M, kM ) is a complete Gromov hyperbolic distance space. Then M is a
visibility submanifold if and only if it is a geodesic visibility submanifold.

Proof That visibility implies geodesic visibility (in the presence of completeness) is clear as
argued above. Note that we do not need Gromov hyperbolicity for this implication.

Conversely, in case (M, kM ) is complete and Gromov hyperbolic, the Geodesic Stability
Theorem [5, Chapter III.H, Theorem 1.7] (which states, roughly speaking, that in Gromov
hyperbolic spaces geodesics and quasi-geodesics are Hausdorff-uniformly close) implies
easily that if M satisfies the visibility property with respect to geodesics, then it also satisfies
the visibility property with respect to all (λ, κ)-quasi-geodesics, and hence, in particular, that
it is a visibility submanifold. ��
Remark 3.9 Bharali–Zimmer constructed convex Goldilocks domains that are not Gromov
hyperbolic (see, for example [3, Lemma 2.9]). In the next section, we construct two examples
of convex domains that are not Goldilocks but that possess versions of the visibility property.
Namely, the first example possesses the geodesic visibility property, whereas the second one
possesses the (full-fledged) visibility property.

4 Two examples

In this section, we present two examples of bounded convex domains that are not Goldilocks
domains; more precisely, condition (1) in Definition 1.2 is not satisfied for either domain.
The domain in the first example is a weak visibility domain, while the domain in the second
example is a visibility domain. We emphasize that it does not seem to be easy to either prove
or disprove that the domain in the first example satisfies the visibility property.

4.1 Example of a weak visibility domain that does not satisfy condition (1) in
Definition 1.2.

Consider �0 : C2 −→ R defined by

�0(z) ..=
{
exp

(− 1/|z1|2
) − Im(z2), if z1 �= 0,

−Im(z2), if z1 = 0.

There exists an ε > 0 such that �0 is convex in the ball B(0, 2ε) (in fact, any ε < 1/
√
6 will

work). We now choose a C∞ function ψ : C2 −→ [0, 1] such that ψ ≡ 1 on B(0, 2ε) and
such that suppψ ⊂ B(0, 3ε). We let � ..= �0 ·ψ and we also let c0 ..= supz∈C2

(−�(z)
) =

supB(0,3ε)
(− �(z)

)
> 0.
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For n ≥ 3, we consider χ : R −→ R defined by χ(t) = (t − ε2)n for all t > ε2 and 0
otherwise. Let c1 ..= inf t≥(3ε/2)2 χ(t), and set C ..= c0/c1. Define

�(z) ..= C χ(‖z‖2) ∀z ∈ C
2;

and observe:

• � is a C2-smooth non-negative, convex function on C
2 that is equal to zero on B(0, ε),

strongly convex locally and strictly positive on C
2\B(0, ε).

• �(z) ≥ c0 for all z ∈ C
2\(B(0, 3ε/2)). Hence�(z)+�(z) ≥ 0 ∀z ∈ C

2\(B(0, 3ε/2)
)
.

• For any z ∈ B(0, ε), �(z) + �(z) = �(z) = �0(z).

Now consider the domain

� ..= {
(z1, z2) ∈ C

2 : ρ(z) ..= �(z) + �(z) < 0
}
.

Note that � ⊂ B(0, 3ε/2), where ρ = � + �0 is convex; consequently, � is a bounded
convex domain. By computing the gradient of ρ, we see that there exists at most one point
p0 ∈ ∂� where the gradient vanishes, and this point is of the form p0 = (0, ic). Moreover,
p0 ∈ B(0, 3ε/2)\B(0, ε). It follows then that � is a bounded convex domain such that ∂� \
{p0} is at least C2-smooth. It is also clear that any point x ∈ (

∂�\{p0}
)∩(

B(0, 3ε)\B(0, ε)
)

is a strongly convex boundary point of �.

� does not satisfy condition (1) in Definition 1.2. We show formally that� does not satisfy
condition (1) in the definition of a Goldilocks domain. So what we need to do is show that
for every ε0 > 0 sufficiently small,

∫ ε0
0 (M�(r)/r)dr = ∞. The way our domain� has been

defined, there exists r0 > 0 such that

� ∩ B(0, r0) = {
(z1, z2) ∈ B(0, r0) : Im(z2) > exp(−1/|z1|2)

}
.

Fix ε0 ∈ (0, r0). It is immediate that for every r ∈ (0, ε0), δ�

(
(0, ir)

) ≤ r (consider the
boundary point 0C2 of �). Now we use the elementary upper bound on the Kobayashi metric
to write

κ�

(
(0, ir); (1, 0)

) ≤ 1/��

(
(0, ir); (1, 0)

)
,

where ��(z; v) ..= sup
{
t > 0 | (

z + (tD)(v/‖v‖)) ⊂ �
}
. From the explicit description of

� ∩ B(0, r0), it follows that ��

(
(0, ir); (1, 0)

) = 1/
√
log(1/r). Therefore

M�(r) ≥ 1

κ�

(
(0, ir); (1, 0)

) ≥ ��

(
(0, ir); (1, 0)

) = 1/
√
log(1/r).

Since ∫ ε0

0

dr

r
√
log(1/r)

= ∞,

� is not a Goldilocks domain.
Every point of ∂� except possibly p0 is C-strictly convex. Consider

S ..= ∂� ∩ B(0, ε) = B(0, ε) ∩ {
z ∈ C

2 : �0(z) = 0
}
. (4.1)

Then, as noticed earlier, any p ∈ ∂�\S, p �= p0, is a strongly convex, and therefore also
a C-strictly convex boundary point. Next, we shall show that any p ∈ S is also a C-strictly
convex boundary point. This will establish that every point of ∂� except possibly p0 is a
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C-strictly convex boundary point. An easy computation, taking into account the fact that
� ≡ 0 on B(0, ε), shows that, for all p ∈ S,

Hp(∂�) =
{
ξ = (ξ1, ξ2) ∈ C

2 : s(p1) p̄1ξ1 − (1/2i)ξ2 = 0
}

= spanC
{
(1, 2is(p1) p̄1)

}
, (4.2)

where s(p1) ..= exp(−1/|p1|2)/|p1|4 for all p1 �= 0, and where s(0) ..= 0. (In particular,
when p1 = 0, Hp(∂�) = spanC

{
(1, 0)

} = C × {0}.) Write u(p) ..= 2is(p1) p̄1 for all
p ∈ S. Then, for every p ∈ S, Hp(∂�) = spanC

{
(1, u(p))

}
. From this it follows that �

fails to beC-strictly convex at some point of S if and only if there exist p ∈ S and ζ ∈ C\{0}
such that p + ζ(1, u(p)) ∈ ∂�. From this it follows easily that

∀ t ∈ [0, 1], p + tζ(1, u(p)) ∈ S.

Since S is as given in (4.1), this implies that

∀ t ∈ [0, 1], �0
(
p + tζ(1, u(p))

) = 0.

But, writing down the definition of �0 and recalling that ζ �= 0, we see that this yields an
immediate contradiction. From this contradiction it follows that � is C-strictly convex at
every point of S, hence (recalling what we observed previously) that � is C-strictly convex
at every boundary point except, possibly, p0.

Now, since � also has at least C2-smooth boundary, we see that we may appeal to Corol-
lary 3.7 to conclude that � is a weak visibility domain. We emphasize that it is unclear
whether � is a visibility domain. The reason is that all boundary points of the type (0, t)
with t real, |t | < ε, are points of infinite type, as can easily be checked. Therefore we cannot
invoke any known theorem to conclude visibility.

4.2 Example of a domain that satisfies the condition in Corollary 1.4 but does not
satisfy condition (1) in Definition 1.2

Consider �0 : C2 −→ R defined by

�0(z) ..=
{
exp

(− 1/‖z‖2) − Im(z2), z �= 0,

0, z = 0,

where ‖z‖ denotes the Euclidean norm of z ∈ C
2. There exists an ε > 0 such that �0

is convex in the ball B(0, 2ε) (in fact, any ε < 1/2
√
2 will work). We now choose a C∞

function ψ : C2 −→ [0, 1] such that ψ ≡ 1 on B(0, 2ε) and such that suppψ ⊂ B(0, 3ε).
We let � ..= �0 · ψ and we also let c0 ..= supz∈C2

(− �(z)
) = supB(0,3ε)

(− �(z)
)

> 0.
We choose another function χ : [0,∞) −→ [0,∞) that is (1) C∞, (2) identically 0 on

[0, ε2] and (3) strictly increasing on [ε2,∞) and strongly convex on (ε2, (ε + δ)2) (that
is, has double derivative positive) for some small δ > 0 (for example, one could take χ =
exp

(− 1/(t − ε2)
)
when t > ε2 and 0 otherwise). Let c1 ..= inf t≥(ε+δ/2)2 χ(t), and set

C ..= c0/c1. Define

�(z) ..= C χ(‖z‖2) ∀ z ∈ C
2;

and observe:

• � is a C∞-smooth, non-negative function on C2 that is equal to zero on B(0, ε) and that
is strongly convex and strictly positive on B(0, ε + δ)\B(0, ε).
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• �(z) ≥ c0 for all z ∈ C
2\B(0, ε+δ/2). Hence�(z)+�(z) ≥ 0 ∀z ∈ C

2\B(0, ε+δ/2).
• For any z ∈ B(0, ε), �(z) + �(z) = �(z) = �0(z).

Now consider the domain

� ..= {
z = (z1, z2) ∈ C

2 : ρ(z) ..= �(z) + �(z) < 0
}
.

Note that� ⊂ B(0, ε+δ/2), on which ρ = � +�0 is convex; consequently,� is a bounded
convex domain. By computing the gradient of ρ, we see that there exists at most one point
p0 ∈ ∂� where the gradient vanishes, and this point is of the form p0 = (0, ic). Moreover,
p0 ∈ B(0, ε + δ/2)\B(0, ε). It follows then that� is a bounded convexdomain such that ∂�\
{p0} is C∞-smooth. It is also clear that any point x ∈ (

∂�\{p0}
) ∩ (

B(0, ε + δ/2)\B(0, ε)
)

is a strongly convex boundary point of �, whence it is of finite type. Set S ..= ∂� ∩ B(0, ε)
and observe that

S = B(0, ε) ∩ {
z ∈ C

2 : �0(z) = 0
}
. (4.3)

It is also easy to show that any point in S different from 0 is a boundary point of � of finite
type. Hence, using Corollary 1.4, it follows that� is a visibility domain. That� is a geodesic
visibility domain follows easily from Corollary 3.2
� does not satisfy condition (1) in Definition 1.2. Note that

� ∩ B(0, ε/2) = {
(z1, z2) ∈ B(0, ε/2) : Im(z2) > exp

( − 1/‖z‖2)}.
From the above expression, we see that, for r sufficiently small, pr ..= (0, ir) ∈ �.Write v ..=
(1, 0); we regard v as a unit vector inC2. It is easy to see that��(pr , v) ≥ ρ, where ρ is given

by ρ =
√(

1/ log(1/r)
) − r2. Therefore, using arguments similar to those used in dealing

with Example 4.1, we readily obtain M�(r) ≥ 1/κ�(pr , v) ≥ ρ =
√(

1/ log(1/r)
) − r2.

Therefore, to prove that � does not satisfy Condition 1 in the definition of a Goldilocks
domain, it suffices to show that for δ > 0 sufficiently small so that the integrand makes
sense,

∫ δ

0

1

r

√
1

log(1/r)
− r2 dr = ∞.

This follows easily. Therefore � is not a Goldilocks domain.

5 Properties of Visibility Subspaces and the Continuous Extension of
Kobayashi Isometries

In this section we shall make the requisite comments about the proof of Theorem 1.9, and also
prove Theorem 1.10 and related corollaries. In the first subsection below, we make certain
observations regarding geodesic subspaces and also present two lemmas about visibility
subspaces, which will be needed in the proofs of the aforementioned theorems. In the next
subsection, we deal with the proofs proper.

As promised in the Introduction, we first provide a sketch of an argument showing why
every subspace V f of Dn , n ≥ 2, of the form V f = {(z, f (z)) : z ∈ D}, where f =
( f1, . . . , fn−1) : D −→ D

n−1 is a holomorphic map, is a visibility subspace if f extends
continuously to D. It is easy to see that every point of ∂aV f = V f \ V f is of the form
(ζ, f (ζ )), where |ζ | = 1. Using this fact, the visibility property of D, the explicit form of
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kDn , and the distance-decreasing property of holomorphicmapswith respect to theKobayashi
distance, it is now easy to show that any pair of distinct points of ∂aV f satisfies the visibility
property with respect to geodesics of kDn .

5.1 Preliminary observations regarding geodesic subspaces and two preparatory
lemmas

Given a geodesic subspace S of (M, kM ), it is easy to see from the definition that S is closed
in M , that (S, kM |S×S) is locally compact, and that the other crucial hypothesis in [11,
Theorem 8.1] is satisfied. Therefore, by this latter result, the completeness of (S, kM |S×S)

is equivalent to the condition that every closed ball is compact, i.e., the distance space is
proper. In particular, if z0 is any fixed point of S, if p is a fixed but arbitrary point of
∂a S ..= S \ S, and if (zn)n≥1 is a sequence in S converging, in the Euclidean sense, to p, then
limn→∞ kM (z0, zn) = ∞. This latter fact also implies that ∂a S ⊂ ∂M = M\M .

Let M = D, a bounded domain in C
d . If (D, kD) is a complete distance space, then any

closed subset S of D satisfies the first defining condition of a geodesic subspace. Thus, in this
case, every closed subset S of D that satisfies only the second condition in Definition 1.7 will
be a geodesic subspace. For example: every holomorphic retract of a complete distance space
(D, kD) is a geodesic subspace. Let� and D be bounded domains inCm andCn , respectively,
such that (�, k�) is complete. Let f : � −→ D be an isometry with respect to the Kobayashi
distances (we are not making any claims about the existence of such isometries). If we write
S ..= f (�) ⊂ D, then it is easy to see that S is a geodesic subspace of D. This example
suggests that there could be a bounded domain D such that (D, kD) is not complete, but such
that D nevertheless has geodesic subspaces. Indeed, this is the case.

Example 5.1 Let � ⊂ C
d be a bounded convex domain and let A be an analytic subset of

� of co-dimension at least 2. Let D ..= � \ A. Then kD = k�|D×D (see, for example, [6,
Theorem 2]). Choose a complex geodesic f in � that avoids A. Clearly, f is a complex
geodesic in D too. Note that (D, kD) is not complete. But f (D) is a geodesic subspace of D.

We need a definition. Before providing it, we clarify that, if X is a given topological space,
then by a compactification of X we shall mean a pair (ι, X̃), where X̃ is required to be a
compact Hausdorff topological space and ι : X −→ X̃ is required to be a homeomorphism
onto its image ι(X), which is, in addition, required to be an open, dense subset of X̃ . We
shall regard X as being a subset of X̃ (by identifying X with ι(X)).

Definition 5.2 Let (X , d) be a proper, geodesic distance space and let (ι, X̃) be a compactifi-
cation of X (regarded as a topological space with the topology induced by d). By a geodesic
loop of X in X̃ we mean a geodesic line γ in (X , d) (that is, an isometric embedding γ from
(R, | · |) to (X , d)) such that the set of limit points of γ at ∞ is equal to the set of limit points
of γ at −∞. (Note that the set of limit points of γ at ∞ (and −∞) is contained in X̃\X .)
We point out that we will only use this notion in the case where X = S is a geodesic subspace
of a bounded, connected, embedded submanifold M of Cd .

We note that it is easy to define the notion of visibility for a pair consisting of a proper
geodesic distance space (X , d) and a compactification (ι, X̃) of X , by analogy with Def-
inition 1.8. The important thing for us to note is that if X has the visibility property with
respect to the compactification X̃ , the proof of the first part of [4, Lemma 3.1] goes through
without change to show that every geodesic ray γ in (X , d) (i.e., an isometric embedding
γ : ([0,∞), | · |) −→ (X , d)) lands at a point of X̃\X , i.e., limt→∞ γ (t) exists as an element
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of X̃ \ X (which is the boundary of X in X̃ ). We note that, in such a situation, a geodesic
loop of X in X̃ is a geodesic line γ such that limt→−∞ γ (t) = limt→∞ γ (t).

We now state two lemmas, the second of which is a mild generalization of Bracci et al.
[4, Lemma 3.1] and which was referred to above. The utility of these lemmas will become
apparent when we prove Theorem 1.9. Since the proof of the second lemma is substantially
the same as that of [4, Lemma 3.1], we omit the proof. The essential observation here is that
the proof in [4] goes through virtually without modification in the more general setting of
visibility subspaces.

Lemma 5.3 Suppose that M ⊂ C
d is a bounded, connected, embedded complex submanifold

of Cd and that S is a visibility subspace of M. If (zν)ν≥1 and (wν)ν≥1 are sequences in S
converging to distinct boundary points p, q ∈ ∂a S, then kM (zν, wν) → ∞ as ν → ∞.

Proof Note that the proof of (1) of Proposition 3.1 goes throughwith almost nomodifications
to show that lim supν→∞(zν |wν)o < ∞, where the Gromov product is now calculated with
respect to kM |S×S and for any fixed o ∈ S. Combining this with our previous observation
that kM (x, o) → ∞ when S � x → x0 ∈ ∂a S, the required conclusion follows immediately.

��
Lemma 5.4 Let M and S be as above. Then any geodesic ray γ in S lands at a point p of
∂a S, i.e., there exists p ∈ ∂a S such that limt→∞ γ (t) = p.

Conversely, suppose that z0 ∈ S and that (zν)ν≥1 is a sequence in S converging to a
point p ∈ ∂a S. For every ν, let γν be a kM-geodesic in S joining z0 to zν . Then, up to a
subsequence, (γν)ν≥1 converges uniformly on the compact subsets of [0,∞) to a geodesic
ray that lands at p.

5.2 The proofs of Theorems 1.9 and 1.10

With these two lemmas in place, it is easy to see that one can, without any difficulty, replicate
the arguments in the proof of [4, Theorem 3.3] to prove Theorem 1.9. We therefore omit the
proof of the latter.

We now illustrate the usefulness of Theorem 1.9 by proving Theorem 1.10.

The proof of Theorem 1.10 Note that f is an isometry between (M, kM ) and (S, kN |S×S).
Therefore, (S, kN |S×S) is Gromov hyperbolic (because (M, kM ) is by assumption so). By
the general theory of Gromov hyperbolic spaces (see [5, Part III, Chapter H, Theorem 3.9]),

f extends to a homeomorphism f̃ from M
G
to S

G
. By Theorem 1.9, idS : S −→ S extends

to a continuous surjection îdS : SG −→ S. There is also a natural inclusion iS of S in N . If

we define f̂ ..= iS ◦ îdS ◦ f̃ , then it is clear that f̂ : MG −→ N is a continuous extension
of f . If S has no geodesic loops in S then, again by Theorem 1.9, îdS is a homeomorphism

from S
G
to S and it follows from the definition of f̂ that, regarding it as a mapping from M

G

to S, it is a homeomorphism. ��
Now, we shall present two important corollaries of Theorem 1.10.

Corollary 5.5 Suppose that M ⊂ C
m and N ⊂ C

n are bounded, connected, embedded
complex submanifolds and that M is complete with respect to its Kobayashi distance. Suppose
that f : M −→ N is an isometry with respect to the Kobayashi distances. Suppose that
(M, kM ) is Gromov hyperbolic and that N is a weak visibility submanifold. Then f extends
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to a continuous map f̂ : MG −→ N, where M
G
denotes the Gromov compactification of

(M, kM ).

Proof Since N is a weak visibility submanifold, (1) of Proposition 3.1 gives us: for every
p, q ∈ ∂N , p �= q , lim sup(x,y)→(p,q)(x |y)o < ∞. In particular,

∀ p, q ∈ ∂a S with p �= q, lim sup
S×S�(x,y)→(p,q)

(x |y)o < ∞,

where we take S ..= f (M), and o to be an arbitrary but fixed point of S. Now the reader
can easily verify that precisely the same method that is used to prove (2) of Proposition 3.1
can also be used, in this case, to show that S is a visibility subspace of N (keep in mind that
(S, kN |S×S) is a proper distance space). So we may once again apply Theorem 1.10 to draw
the desired conclusion. ��

In particular, when M = D, which is a complete, Gromov hyperbolic distance space with
respect to the Kobayashi distance kD and for which the Gromov compactification is known
to coincide with the Euclidean compactification, we have:

Corollary 5.6 Suppose that M ⊂ C
m is a weak visibility submanifold. Suppose that f :

D −→ M is a complex geodesic. Then f extends to a continuous map f̂ : D −→ M.

We are now ready to present the proof of Corollary 1.12.

The proof of Corollary 1.12 We first note that, by the arguments that occur in the first part of
the proof of Corollary 1.4, we can show that the hypotheses of Corollary 3.7 in Sect. 3 are
satisfied by �. Consequently, by Corollary 3.7, � is a weak visibility domain. Now we can
invoke Corollary 5.6 to obtain the desired conclusion. ��

6 AWolff–Denjoy-type theorem

In this sectionwe present a proof of Theorem 1.14. Our proof relies on two crucial ingredients
that are consequences of visibility with respect to (1, κ)-almost-geodesics for some κ > 0.
In the first subsection below, we present these ingredients first.

6.1 Preparations

Our first ingredient is an analogue of Proposition 4.1 in [2]. Its proof is based on an argument
developed by Karlsson in [10].

Proposition 6.1 Let M be a bounded, connected, embedded complex submanifold of Cd .
Suppose there exists κ0 > 0 such that M possesses the visibility property with respect to
(1, κ0)-almost-geodesics. Let ν, μ : Z+ −→ Z+ be strictly increasing functions such that
there exists m0 ∈ M so that

lim
j→∞ kM

(
Fν( j)(m0),m0

) = lim
j→∞ kM

(
Fμ( j)(m0),m0

) = ∞. (6.1)

Then there exists ξ ∈ ∂M such that, for all z ∈ M, lim j→∞ Fν( j)(z) = lim j→∞ Fμ( j)(z) =
ξ .
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Proof Theproof ofBharali andMaitra [2, Proposition 4.1] goes throughwithoutmodification.
The only observation to be made is that the argument given there works for weak visibility
submanifolds, not just visibility domains as considered in [2], when one takes into account
the essential lemmas regarding the Kobayashi distance andmetric on submanifolds presented
in Sect. 2 of this paper. ��

Our second ingredient is Theorem 6.6 below, which is a consequence of Theorem 6.4. The
latter theorem says that, when M is taut, visibility with respect to (1, κ)-almost-geodesics
for some κ > 0 implies thatMM (r) → 0 as r → 0. (We recall that the notationMM (r) is
explained right after (1.1).) To prove Theorem 6.4, we need two lemmas. Both of them are
elementary; so we state them here without proof.

Lemma 6.2 Suppose that (φν)ν≥1 is a sequence of holomorphic maps fromD toCd . Suppose
that (φν)ν≥1 is uniformly bounded. Then, for every r0 ∈ (0, 1), there exists L = L(r0) < ∞
such that

∀ ν ∈ Z+, ∀ζ1, ζ2 ∈ D(0, r0), ‖φν(ζ1) − φν(ζ2)‖ ≤ L|ζ1 − ζ2|,
where D(0, r0) ..= {ζ ∈ C : |ζ | < r0 }.
Lemma 6.3 Suppose that (φν)ν≥1 is a sequence of holomorphic maps fromD toCd . Suppose
that (φν)ν≥1 is uniformly bounded and that there exists ε0 > 0 such that, for all ν ∈ Z+,
‖φ′

ν(0)‖ ≥ ε0. Then there exists δ > 0 such that

∀ ν ∈ Z+, ∀ ζ1, ζ2 ∈ D(0, δ), ‖φν(ζ1) − φν(ζ2)‖ ≥ (ε0/2)|ζ1 − ζ2|,
where D(0, δ) ..= {ζ ∈ C : |ζ | < δ }.
Theorem 6.4 Let M be a bounded, connected, embedded complex submanifold of Cd . Sup-
pose that M has the visibility property with respect to (1, κ)-almost-geodesics for some κ > 0
and, moreover, that M is taut. ThenMM (r) → 0 as r → 0.

Proof Wewill closely follow the proof ofTheorem4.2 in [2].However,we provide a complete
proof here because there is an essential difference between the proof of [2, Theorem 4.2] and
the current proof, which is that the former does notwork if it is only known that M possesses
the visibility property with respect to (1, κ)-almost-geodesics for some κ > 0.

Assume, to get a contradiction, thatMM (r) �→ 0 as r → 0. SinceMM (r) decreases as r
decreases to 0, the above assumption implies that there exists ε1 > 0 such thatMM (r) ↓ ε1
as r ↓ 0. Let ε0

..= ε1/2. Then, for every ν ∈ Z+, MM (1/ν) > ε0. Therefore, for every
ν ∈ Z+, there exist zν ∈ M such that δM (zν) ≤ 1/ν and vν ∈ T (1,0)

zν M with ‖vν‖ = 1 such
that 1/κM (zν, vν) > ε0, i.e., κM (zν, vν) < 1/ε0. We also assume, without loss of generality,
that (zν)ν≥1 converges to some point ξ ∈ ∂M . By the definition of κM , the inequalities
above imply that there exist a holomorphic map φν : D −→ M such that φν(0) = zν
and a tν ∈ (0, 1/ε0) such that tνφ′

ν(0) = vν . This last equation implies: tν‖φ′
ν(0)‖ = 1,

which in turn implies that, for all ν ∈ Z+, ‖φ′
ν(0)‖ > ε0. By the tautness of M , there

exists a subsequence of (φν)ν≥1, which we continue to denote by (φν)ν≥1 without changing
subscripts, that converges uniformly on the compact subsets of D to a holomorphic map φ

that is either M-valued or ∂M-valued. Note that

φ(0) = lim
ν→∞ φν(0) = lim

ν→∞ zν = ξ.

Therefore, φ is ∂M-valued. Note that ‖φ′(0)‖ ≥ ε0; so φ is non-constant.
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Now we invoke Lemma 6.3 to conclude that there exists δ ∈ (0, 1), δ ≤ tanh(κ), such
that

∀ ν ∈ Z+, ∀ ζ1, ζ2 ∈ D(0, δ), ‖φν(ζ1) − φν(ζ2)‖ ≥ (ε0/2)|ζ1 − ζ2|. (6.2)

Define η ..= φ(δ/2) ∈ ∂M and wν
..= φν(δ/2). Then (wν)ν≥1 is a sequence in M converging

to η. By (6.2), it follows immediately that φ(0) �= φ(δ/2), i.e., ξ �= η. The sequences (zν)ν≥1

and (wν)ν≥1 in M converge to ξ ∈ ∂M and η ∈ ∂M , respectively.
Next, we shall show that γν

..= φν ◦ σ : [0, R] −→ M is a (1, κ)-almost-geodesic in M ,
where σ : [0, R] −→ D is the geodesic in D for the Poincaré distance joining 0 to δ/2 (R is,
in fact, equal to tanh−1(δ/2) and σ itself is just tanh |[0,tanh−1(δ/2)]). By the explicit form of
σ , there exists Mδ > 1 such that, for every s, t ∈ [0, R], (1/Mδ)|s − t | ≤ |σ(s) − σ(t)| ≤
Mδ|s − t |. Now note that

∀ ν ∈ Z+, ∀ s, t ∈ [0, R], ‖γν(s) − γν(t)‖ = ‖φν(σ (s)) − φν(σ (t))‖
≤ L|σ(s) − σ(t)| ≤ LMδ|s − t |.

Towrite the second inequality above, we use Lemma 6.2. Therefore, all the γν’s are Lipschitz
(in fact, as we see, LMδ works as a Lipschitz constant for all of them) and therefore they are
absolutely continuous (in fact, each γν is clearly C∞-smooth). We compute

∀ ν ∈ Z+, ∀ t ∈ [0, R], κM (γν(t), γ
′
ν(t)) = κM

(
φν(σ (t)), σ ′(t)φ′

ν(σ (t))
)

≤ κD(σ (t), σ ′(t)) = 1.

(To write the second inequality above, we use the fact that φν is contractive relative to the
Kobayashimetrics; the final equality follows because σ is a geodesic for the Poincarémetric.)
We also observe that

∀ ν ∈ Z+, ∀ s, t ∈ [0, R], kM (γν(s), γν(t)) = kM
(
φν(σ (s)), φν(σ (t))

)
≤ kD(σ (s), σ (t)) = |s − t |.

(To write the second inequality above, we use the fact that φν is contractive relative to the
Kobayashi distances; the final equality follows because σ is a geodesic for the Poincaré
distance.)

Finally, since |s − t | ≤ R ≤ tanh−1(δ) ≤ tanh−1(tanh(κ)) = κ for all s, t ∈ [0, R], we
have

|s − t | − κ ≤ 0 ≤ kM
(
γν(s), γν(t)

) ≤ |s − t | < |s − t | + κ

for all s, t ∈ [0, R]. The above considerations show that each γν is a (1, κ)-almost-geodesic.
By our assumption that M is a (1, κ)-visibility submanifold, it follows that there exists a
compact subset K ofM such that, for every ν ∈ Z+, ran(γν)∩K �= ∅. But ran(γν) ⊂ ran(φν)

and, since (φν)ν≥1 converges uniformly on the compact subsets of D to a ∂M-valued map,
it follows that for every compact subset K of M , ran(γν) ∩ K = ∅ for all ν sufficiently
large. This is a contradiction. So our starting assumption must be wrong, and MM (r) → 0
as r → 0. ��

Remark 6.5 Theorem 6.4 shows that, in particular, if a bounded, convex domain � is a weak
visibility domain, one hasM�(r) → 0 as r → 0.

We now prove the following analogue of Theorem 4.3 in [2].
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Theorem 6.6 Suppose that M is a bounded, connected, embedded complex submanifold of
C
d . Suppose that M is a (1, κ)-visibility submanifold for some κ > 0 and that it is also

taut. Suppose that X is a connected complex manifold and that (φν)ν≥1 is a sequence of
holomorphic maps from X to M that converges, uniformly on the compact subsets of X, to a
holomorphic map ψ from X to ∂M. Then ψ is constant.

Proof We argue exactly as in the proof of Theorem 4.3 in [2]. The latter result was a direct
consequence of the fact that M�(r) → 0 as r → 0 for a taut domain � satisfying the
visibility property. The corresponding result in the present case is Theorem 6.4. ��

6.2 Proof of Theorem 1.14

We are now ready to give a sketch of the proof of Theorem 1.14.

Proof of Theorem 1.14 We argue exactly as in the proof of Theorem 1.8 in [2], replacing
� there by M , and consider two subcases as in the latter proof. In the first subcase, the
results employed in the latter proof are Bharali and Maitra [2, Theorem 4.3] and Bharali and
Maitra [2, Proposition 4.1]. The results analogous to these in this paper are Theorem 6.6 and
Proposition 6.1, respectively, which we employ in our argument to settle this subcase.

In the second subcase, the results employed in the proof of Bharali and Maitra [2, The-
orem 1.8] are Bharali and Maitra [2, Result 2.1] and [2, Lemma 2.9] and the existence of
(λ, κ)-almost-geodesics on bounded domains. The results analogous to these in this paper
are Remark 2.3, Theorem 2.8 and Result 2.9, respectively, which we employ in our argument
to settle this subcase and complete the proof. ��
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