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A weak notion of visibility, a family of examples,
and Wolff–Denjoy theorems

GAUTAM BHARALI AND ANWOY MAITRA

Abstract. We investigate a form of visibility introduced recently by Bharali and
Zimmer—and shown to be possessed by a class of domains called Goldilocks do-
mains. The range of theorems established for these domains stems from this form
of visibility together with certain quantitative estimates that define Goldilocks
domains. We show that some of the theorems alluded to follow merely from the
latter notion of visibility. We call those domains that possess this property vis-
ibility domains with respect to the Kobayashi distance. We provide a sufficient
condition for a domain in Cn to be a visibility domain. A part of this paper is de-
voted to constructing a family of domains that are visibility domains with respect
to the Kobayashi distance but are not Goldilocks domains. Our notion of visibil-
ity is reminiscent of uniform visibility in the context of CAT(0) spaces. However,
this is an imperfect analogy because, given a bounded domain � in Cn , n > 2,
it is, in general, not even known whether the metric space (�, k�) (where k� is
the Kobayashi distance) is a geodesic space. Yet, with just this weak property, we
establish two new Wolff–Denjoy-type theorems.

Mathematics Subject Classification (2010): 32F45 (primary); 32H50, 53C23,
32U05 (secondary).

1. Introduction and statement of main results

This work is motivated by the results— ranging from the boundary behaviour of
complex geodesics to the dynamics of iterations of holomorphic maps— in a re-
cent work by Bharali and Zimmer [9]. In that work, the authors introduce a class
of bounded domains in Cn , called Goldilocks domains, and establish for these do-
mains the range of results alluded to. Given any bounded domain � ⇢ Cn , let
k� be the Kobayashi distance on � and � : � ⇥ Cn ⇠= T 1,0� ! [0,+1)
be the infinitesimal Kobayashi metric (also called the Kobayashi–Royden metric).
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Goldilocks domains are defined in terms of certain quantitative bounds from below
on �(z; ·) and from above on k�(o, z) (where o is some chosen point in �) as
z ! @�—see Subsection 1.1 below for a precise definition. The results in [9] are
a consequences of these bounds. In proving some of the major results in [9], these
bounds play two separate roles:

(a) In controlling the oscillation of holomorphic maps, the magnitudes of their
derivatives, etc., along sequences approaching @�;

(b) In establishing that (�, k�) has certain consequential features—first identi-
fied by Eberlein and O’Neill—possessed by manifolds with negative sectional
curvature.

The property hinted at by (b) is a purely geometric (i.e., not quantitative) property
reminiscent of visiblity in the sense of Eberlein–O’Neill [14]. It is used in a funda-
mental way in the above-mentioned results. So, it is natural to ask whether the con-
clusions of those results would hold true in domains thatmerely have the geometric
property alluded to— i.e., without assuming the quantitative estimates that define
Goldilocks domains. We coin a term for those domains that have this property via
the following definition (see Subsection 1.2 for the definition of a (�, )-almost-
geodesic):
Definition 1.1. Let � be a bounded domain in Cn . We say that � is a visibility
domain with respect to the Kobayashi distance (or just visibility domain for brevity)
if, given any � > 1 and  > 0, for each pair of distinct points ⇠, ⌘ 2 @� and
each pair of �-open neighbourhoods V and W of ⇠ and ⌘, respectively, such that
V \ W = ?, there exists a compact subset K of � such that the image of each
(�, )-almost-geodesic � : [0, L] ! �with � (0) 2 V and � (L) 2 W intersects K .

While the notion in the above definition is strongly reminiscent of the notion of
visibility manifolds—especially in view of [5, pp. 54–55]—we must point out that
the analogy is imperfect. For instance, given a bounded domain in Cn , n > 2, it is,
in general, not even known whether the metric space (�, k�) is a geodesic space. It
is for this reason that Definition 1.1 features (�, )-almost-geodesics, which serve
as substitutes for geodesics.

One might ask: is there a reasonably rich collection of domains that are visi-
bility domains with respect to the Kobayashi distance? The answer to this is, “Yes,”
since any Goldilocks domain is a visibility domain with respect to the Kobayashi
distance, and—as shown in [9]— the Goldilocks property admits a very wide range
of domains. However, Definition 1.1 would be interesting only if one knew that
there exist visibility domains that are not Goldilocks domains. A major part of this
paper is devoted to showing that there is a rich family of domains of this sort. We
introduce these domains in Subsection 1.1. In other words, Definition 1.1 is not just
a geometrization of the Goldilocks property but also admits domains in Cn that are
fundamentally different from Goldilocks domains.

Most consequences of visibility in the sense of [14] have been extended to
CAT(0) spaces—see [10, Chapter II], for instance. Uniform visibility is the ana-
logue, in the context of CAT(0) spaces, of the property given in Definition 1.1.
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Now, a proper CAT(0) space is uniformly visible if and only if it is Gromov hyper-
bolic. There is a reason for mentioning this: many statements that one would like
to prove for the metric space (�, k�) would follow very easily if this space were
Gromov hyperbolic. However, Gromov hyperbolicity is a property that is extremely
difficult to establish for k� for � ⇢ Cn when n > 2—see [6, 28] for some posi-
tive instances. Visibility, in the sense of Definition 1.1, is much easier to show. In
Theorem 1.5 below we present fairly mild conditions for a bounded domain in Cn

to be a visibility domain. It is this theorem that we use to show that the domains
introduced in Subsection 1.1 are visibility domains with respect to the Kobayashi
distance. We expect that their construction would serve as a general recipe for con-
structing visibility domains.

Returning to the question in our first paragraph: the link between Gromov hy-
perbolicity and the property in Definition 1.1, via analogies to uniform visibility,
continues to motivate (as in the case of [9]) certain key moves in proving analogues
of some of the results in [9]. But we show here that the roles of the quantitative
bounds (which also define Goldilocks domains) identified in (a) above can often
be managed by the visibility property alone. This is the content of our results in
Section 4, which may be of independent interest. With these inputs, we can system-
atically approach several applications for which visibility is well-suited—some of
which will be a part of forthcoming work. In this paper, we prove two Wolff–
Denjoy-type theorems, which we introduce in Subsection 1.3.

We now introduce the main theorems of this paper.

1.1. Visibility domains that are not Goldilocks domains

We begin with the definition of a Goldilocks domain. For this, we shall need two
quantities. Given a bounded domain � and a point z 2 �, ��(z) will denote the
(Euclidean) distance from z to Cn \�. Next, we define:

M�(r) ..= sup
n 1
�(z; v)

| ��(z) 6 r and kvk = 1
o
,

where k · k denotes the Euclidean norm (the choice of a norm is actually irrelevant
to the purpose that M� serves). From the definition of �, it is easy to see that
M� expresses the lower bound for � on the unit sphere in T 1,0� in terms of the
distance from Cn \�.
Definition 1.2. A bounded domain � ⇢ Cn is called a Goldilocks domain if

(1) for some (hence any) ✏ > 0 we have
Z ✏

0

1
r
M� (r) dr < 1;

(2) for each z0 2 � there exist constants C,↵ > 0 (that depend on z0) such that

k�(z0, z) 6 C + ↵ log
1

��(z)
8z 2 �. (1.1)
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The quantitative bounds in the above definition encode the following idea: in
a Goldilocks domain, �(z; ·) cannot grow too slowly and k�(z0, z) cannot grow
too rapidly as z ! @� (this is the rationale for the term “Goldilocks domains”).

The latter has the following geometric implication: if � is a Goldilocks do-
main, then @� can neither have outward-pointing cusps nor points at which @� is
flat to infinite order and is, in a precise sense, too flat. One may intuit the assertion
about outward-pointing cusps with just a little work: a classical argument for planar
domains reveals that Condition 2 above fails for such domains. This is the intuition
behind a family of domains—which we call caltrops—that are not Goldilocks
domains, but whose geometry is sufficiently well-behaved that it is reasonable to
expect them to be visibility domains. With this, we make the following:
Definition 1.3. A bounded domain � ⇢ Cn , n > 2, is called a caltrop if there ex-
ists a finite set of exceptional points {q1, . . . , qN } ⇢ @� such that @�\{q1, . . . , qN }
is C2-smooth, if @� is strongly Levi-pseudoconvex at each point in @�\{q1,. . .,qN },
and if for each exceptional point q j , j = 1, . . . N , there exists a connected open
neighbourhood Vj 3 q j such that � \ Vj is described as follows: there exist con-
stants p j 2 (1, 3/2) and C j > 1, a unitary transformation U( j), and a continuous
function  j : [0, A j ] ! [0,+1) (where A j > 0) with the properties mentioned
below such that U j (� \ Vj ) is a “solid of revolution” given by

U j (� \ Vj )

=
�
(z1,. . .,zn)2Cn |<(zn)2(0,A j ), =(zn)2+

X
16 j6(n�1)|z j |

2< j
�
<(zn)

�2 
,

where we write U j ..= U( j)(· � q j ). Each function  j has the following properties:

•  j is of class C2 on (0, A j );
• For each x 2 [0, A j ], we have

(1/C j ) x p j 6  j (x) 6 C j x p j ;

•  j is strictly increasing and  0
j is increasing on (0, A j );

• limx!0+  j (x) 00
j (x) = 0.

A few words about the functions  j in the above definition—and about the last
(somewhat technical-looking) property—are in order. These functions are meant
to quantify the fact that, around each point of @� at which it is non-smooth, the
boundary resembles the following real (singular) hypersurface
�
(z1, . . . , zn) 2 Cn | <(zn) 2 (0, A), =(zn)2 +

X
16 j6(n�1)|z j |

2 = <(zn)2p
 

for some p 2 (1, 3/2). The latter models a Hölderian cusp that is not too sharp.
The reader may wonder, given that several specific properties must hold true

simultaneously in a caltrop, whether such a domain as described in Definition 1.3
can even exist. We show in Section 3 that caltrops do exist. With this, the assertion
about caltrops that is of greatest interest to us is:
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Theorem 1.4. Caltrops are visibility domains with respect to the Kobayashi dis-
tance. However, a caltrop is not a Goldilocks domain.

The proof of this theorem requires several supporting results—about which we
shall say more presently—plus a sufficient condition for a bounded domain to be a
visibility domain with respect to the Kobayashi distance. We discuss this sufficient
condition next.

1.2. A sufficient condition for visibility

The following is the sufficient condition that we have alluded to several times in
this section.

Theorem 1.5 (General visibility lemma). Let � ⇢ Cn be a bounded domain.
Suppose there exists a C1-smooth strictly increasing function f : (0,+1) ! R
such that

• f (t) ! +1 as t ! +1;
• For some z0, we have

k�(z0, z) 6 f
⇣ 1
��(z)

⌘
8z 2 �.

Assume that M�(t) ! 0 as t ! 0 and that there exists an r0 > 0 such that
Z r0

0

M�(r)
r2

f 0
✓
1
r

◆
dr < 1. (1.2)

Then, � is a visibility domain with respect to the Kobayashi distance.

It is clear – comparing Theorem 1.5 with Conditions (1) and (2) in Definition 1.2 –
that our result is influenced by the definition of Goldilocks domains. Among our
motivations were:

• that our conditions account for the estimates on k� and � when � is any of the
planar domains referred to in Subsection 1.1 with @� having outward-pointing
cusps (which also play a central role in establishing that caltrops are visibility
domains);

• that elements of the proof of the main visibility result in [9], namely: [9, Theo-
rem 1.4], continue to be useful in establishing visibility (in the sense of Defini-
tion 1.1).

- Observe that the inequalities that define Goldilocks domains are subsumed by
Theorem 1.5: for these domains, just set

f (t) = C + ↵ log(t), t 2 (0,+1),
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with C,↵ > 0 as in (1.1), in the latter theorem. The proof of Theorem 1.5 is given
in Section 5.

There are two essential matters relating to visibility domains that we had de-
ferred. We address them here. First, we give a definition for (�, )-almost-geo-
desics:
Definition 1.6 (Bharali–Zimmer, [9]). Let� ⇢ Cn be a bounded domain and I ⇢
R an interval. For � > 1 and  > 0, a curve � : I ! � is called a (�, )-almost-
geodesic if

(1) for all s, t 2 I ,

��1|t � s| �  6 k�(� (s), � (t)) 6 �|t � s| + ;

(2) � is absolutely continuous (whence � 0(t) exists for almost every t 2 I ) and, for
almost every t 2 I , �(� (t); � 0(t)) 6 �.

Secondly, the discussion surrounding visibility domains suggests that, given any
pair of points in�, there exists (for any � > 1 and  > 0) a (�, )-almost-geodesic
joining them, but why must this be so? In fact, this is true for any bounded domain
�—as shown by [9, Proposition 4.4].

The General Visibility Lemma (i.e., Theorem 1.5) is our key tool for showing
that caltrops are visibility domains. We must derive appropriate upper bounds for
k�(o, z) (where o is a chosen point in�) and lower bounds for �(z; ·) for z in the
caltrop �, z sufficiently close to @�. The following points describe very briefly the
challenging parts of the proof of Theorem 1.4:

(i) We explicitly calculate the Kobayashi distance on a model domain D b C, @D
having an outward-pointing cusp, which is carefully chosen keeping in view
the geometry of @� \ Vj , j = 1, . . . , N , the latter being an outward-pointing
cusp of @� as described in Definition 1.3. Then, C-affine embeddings of D
into � \ Vj allow us to estimate k� using the fact that these embeddings are
contractive relative to the Kobayashi distance.

(ii) We introduce a trick of estimating the Sibony pseudometric [25, Proposition 6]
for� in�\Vj , j = 1, . . . , N . The relationship between the latter pseudomet-
ric and � leads to an estimate for �(z; ·) from below for z 2 � \ Vj .

The argument summarized by (i) above requires several results, which are pre-
sented in Section 6. The proof of Theorem 1.4 is given in Section 7. We expect the
procedures in this proof to serve as a general recipe for constructing new visibility
domains.

1.3. Wolff–Denjoy theorems for visibility domains

The classical Wolff–Denjoy theorem is as follows (in this paper, D will denote the
open unit disk in C with centre 0):
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Result 1.7 (Denjoy [13], Wolff [26]). Suppose F : D ! D is a holomorphic map.
Then, one of the following holds:

(1) F has a fixed point in D;
(2) There exists a point ⇠ 2 @D such that lim⌫!1 F⌫(z) = ⇠ for every z 2 D, this

convergence being uniform on compact subsets of D.

There has been sustained interest in understanding the behaviour of iterates of a
map F : X ! X where X is a space that— in some appropriate sense— resembles
D while F possesses some degree of regularity that enables a generalization of
Result 1.7 to F : X ! X . The above result was extended to the unit (Euclidean)
ball in Cn , for all n 2 Z+, by Hervé [16]. Abate further generalized this in [1] to
strongly convex domains. Let X be a visibility manifold in the sense of [14] (as
discussed at the beginning of this section). Then, one can construct a boundary for
X “at infinity” that serves as the analogue of @D. With this set-up for X , Beardon [7]
generalized the above result to F : X ! X where F is a strict contraction.

For various reasons having to do with their intrinsic geometry, convex domains
predominate among recent generalizations of the Wolff–Denjoy theorem: see, for
instance, [4, 8, 11, 29] and several of the results in [20]. Visibility in the sense
of Definition 1.1 is one of the key ingredients in the proof by Bharali–Zimmer of
a generalization [9, Theorem 1.10] of Result 1.7 to taut Goldilocks domains. This
extends theWolff–Denjoy phenomenon to a wide range of domains, including pseu-
doconvex domains of finite type—see [9, Corollary 2.11]—which are, in general,
neither convex nor biholomorphic to convex domains. In the following result, we
extend the Wolff–Denjoy phenomenon to all visibility domains with respect to the
Kobayashi distance that are taut:

Theorem 1.8. Suppose� ⇢ Cn is a visibility domain with respect to the Kobayashi
distance that is taut and that F : � ! � is a holomorphic map. Then exactly one
of the following holds:

(1) For each z 2 �, the orbit {F⌫(z) | ⌫ 2 Z+} is relatively compact in �;
(2) There exists a ⇠ 2 @� such that lim⌫!1 F⌫(z) = ⇠ for every z 2 �, this

convergence being uniform on compact subsets of �.

The statement of the above theorem differs from that of [9, Theorem 1.10] in the one
respect that the dichotomy presented in the above theorem holds true on any taut
visibility domain, and not just on Goldilocks domains. Furthermore, the hypothesis
of Theorem 1.8 does admit domains that are not Goldilocks domains—as the reader
will infer from Corollary 1.10 below.

The proof of [9, Theorem 1.10] is borne by two distinct ideas. The first is
the following heuristic, which is entirely a consequence of visibility: if we as-
sume that there exist two strictly increasing sequences (⌫i )i>1, (µ j ) j>1 ⇢ Z+ with
F⌫i (o) ! ⇠ 2 @�, Fµ j (o) ! ⌘ 2 @�, and ⇠ 6= ⌘, then we arrive at a contra-
diction by analysing k�(F⌫i (o), Fµ j (o)). Briefly: with ⌫i > µ j , an estimate for
k�(F⌫i (o), Fµ j (o)) based on the fact that F is contractive with respect to k� is
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incompatible with an estimate based on the fact that every (1, )-almost-geodesic
(with  > 0) joining F⌫i (o) to Fµ j (o) must pass within a fixed distance of o.
As this is a consequence of visibility, this heurisitc informs the proof of Theo-
rem 1.8 too. However, visibility alone does not a priori seem to explain the limits
F⌫i (o) ! ⇠ and Fµ j (o) ! ⌘ mentioned above. That explanation, under the as-
sumption that� is taut, belongs to the realm described by (a) earlier in this section.
It turns out that (still assuming that � is taut) visibility alone is enough to justify
these limits. This is the purport of our results in Section 4, which play a supporting
role in the proof of Theorem 1.8, but may also be of independent interest.

The dichotomy in the behaviour of the iterations in Theorem 1.8 is not quite
what is given by the classical Wolff–Denjoy theorem (i.e., Result 1.7). Where,
among the Wolff–Denjoy-type results cited above, the dichotomy given by Re-
sult 1.7 does hold, it is a consequence of the domains � in question being con-
tractible and of @� satisfying some non-degeneracy condition: some form of strict
convexity; or strong pseudoconvexity, as in [18]; etc. In view of the many examples
presented in [9, Section 2], and given Theorem 1.4 about caltrops, the boundaries of
taut visibility domains do not generally have the type of non-degeneracy mentioned
above. However, with some conditions on the topology of � (as opposed to the ge-
ometry of @�), we can use a result of Abate [3] to obtain a version of Theorem 1.8
whose conclusions more closely resemble those of Result 1.7.

Theorem 1.9. Suppose� ⇢ Cn is a visibility domain with respect to the Kobayashi
distance that is taut, and that � is of finite topological type. Suppose further that

H j (�; C) = 0 for each odd j , 1 6 j 6 n.

Let F : � ! � be a holomorphic map. Then exactly one of the following holds:

(1) F has a periodic point in �;
(2) There exists a ⇠ 2 @� such that lim⌫!1 F⌫(z) = ⇠ for every z 2 �, this

convergence being uniform on compact subsets of �.

In the first case, each orbit {F⌫(z) | ⌫ 2 Z+} for z 2 �, is relatively compact in �.

Recall that for � to have finite topological type means that the singular homology
groups Hj (�; Z) are of finite rank for all j 2 N.

We point out that the domains to which Theorem 1.9 applies need not be con-
vex or biholomorphic to a convex domain (a fact that will be emphasised by the
corollary below). In this regard, Theorem 1.9 bears relation to [18] by X. Huang,
in which the dichotomy presented in Result 1.7 is established for bounded topo-
logically contractible strongly pseudoconvex domains. Loosely speaking, a ver-
sion of the heuristic discussed right after Theorem 1.8 appears in [18], although
the specifics that make this heuristic work in [18] and for our result differ greatly.
(Also, the arguments in [18] suggest that the dichotomy presented in Result 1.7
would be very hard to obtain for the domains of the generality that we consider.)

The final result of this subsection is meant to illustrate tangibly the range of
domains—with an emphasis on domains that need not be convex or biholomorphic
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to a convex domain, and with boundaries that aren’t even Lipschitz— to which the
Wolff–Denjoy phenomenon extends.

Corollary 1.10. Suppose � ⇢ Cn is either a bounded pseudoconvex domain of
finite type or a caltrop. Suppose further that � is of finite topological type and that

H j (�; C) = 0 for each odd j , 1 6 j 6 n.

Let F : � ! � be a holomorphic map. Then exactly one of the following holds:

(1) F has a periodic point in �;
(2) There exists a ⇠ 2 @� such that lim⌫!1 F⌫(z) = ⇠ for every z 2 �, this

convergence being uniform on compact subsets of �.

In the first case, each orbit {F⌫(z) | ⌫ 2 Z+},for z 2 �, is relatively compact in �.

The proofs of all the results of this subsection are presented in Section 9 below.

2. Technical preliminaries

This section is dedicated to introducing notation that will recur throughout this pa-
per, and some known results that will play a supporting role in the proofs presented
in the following sections. This section is divided into three parts. We begin with
some notation (some of which has appeared in passing in Section 1) that we shall
need.

2.1. Common notation

We fix the following notation, which we shall frequently need.

(1) For v 2 Cn , kvk will denote the Euclidean norm. Given points z, w 2 Cn , we
shall commit a mild abuse of notation by not distinguishing between points and
tangent vectors, and denote the Euclidean distance between them as kz � wk.

(2) The maps ⇡ j : Cn ! C, j = 1, . . . , n, will denote the projection onto the j-th
factor.

(3) Dwill denote the open unit disk inCwith centre at 0, while D(a, r)will denote
the open disk in C with radius r > 0 and centre a.

(4) Given an open set U ⇢ Cn and a C2-smooth function ⇢ : U ! R, we will
denote byL(⇢)(z; v) the quadratic form (called the Levi-form of ⇢) determined
by the complex Hessian of ⇢ at z 2 U :

L(⇢)(z; v) ..=
X

16 j, k6n
@2z j zk⇢(z)v jvk

for each v 2 Cn (equivalently, for each v 2 T 1,0z U ).
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2.2. Facts relating to the Kobayashi geometry of domains

Let � be a domain in Cn . We shall assume that the reader is familiar with the
Kobayashi pseudodistance k� and the Kobayashi–Royden pseudometric �. The
only comment concerning the basics of these objects that we shall make is that k�
and � are related as follows:

k�(z, w) = inf
�2C(z,w)

Z 1

0
�(� (t); � 0(t)) dt 8z, w 2 �,

where C(z, w) is the set of all piecewise C1 paths � : [0, 1] ! � satisfying � (0) =
z and � (1) = w. This is a result by Royden [24]

We shall need the following estimate on k�:
Result 2.1 ([9, Proposition 3.5-(1)]). Let � be a bounded domain in Cn . Fix an
open ball B(�) with centre 0 2 Cn that is so large that � b B(�). Let

c ..= infx2�, kvk=1 B(�)(x; v).

Then, k�(z, w) > ckz � wk for every z, w 2 �.
Tautness is closely tied to metric geometry associated to the Kobayashi pseu-

dodistance. For a domain � ⇢ Cn , n � 2, being taut provides additional informa-
tion about the complex geometry of �. We collect a couple of observations of this
nature in the following:
Result 2.2. Let � ⇢ Cn be a taut domain. Then:

(1) (see, for instance, [19, Proposition 3.5.13]) � is continuous on �⇥ Cn;
(2) ([27, Theorem F]) If � is bounded, then it is pseudoconvex.

In order to prove Corollary 1.10, we would need to prove that caltrops (we shall
show in the next section that caltrops indeed exist) are taut. The following result
will be useful in this proof.
Result 2.3 ([15, Corollary 2.4]). Let� be a bounded domain in Cn whose bound-
ary is of class C2 and strongly Levi-pseudoconvex in @�-neighbourhoods of two
distinct points ⇠, ⌘ 2 @�. Then, there is a constant C > 0, which depends on ⇠ and
⌘, and open neighbourhoods V⇠ and V⌘ in Cn of ⇠ and ⌘, respectively such that

k�(a, b) > 2�1 log
1

��(a)
+ 2�1 log

1
��(b)

� C

for each point a 2 � \ V⇠ and b 2 � \ V⌘.
The proof of Theorem 1.4 will, at a certain stage, require a precise estimate

from below for �—where � is a bounded domain in Cn—in the vicinity of a
strictly pseudoconvex point in @�. Such an estimate is provided by a result of
D. Ma [23, Theorem B]. Before stating the result that we need, we ought to men-
tion that Ma’s result is stated for domains for which the part of the boundary that
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is strongly Levi-pseudoconvex is C3-smooth. However, Ma’s techniques are still
valid up to a point when this regularity condition is weakened to C2-smooth— the
modifications required, in essence, are to replace all occurences of O(kxk3) by
o(kxk2) in those steps of the argument that invoke Taylor’s theorem. Where this
does not suffice, Balogh and Bonk— in the sketch of their proof of [6, Proposi-
tion 1.2]—provide the essential modification needed. While Balogh–Bonk state
their estimate for strongly pseudoconvex domains with C2-smooth boundary, their
proof actually involves local estimates, which lead to the inequalities below. With
these clarifications, we state:
Result 2.4 (paraphrasing [23, Theorem B] and [6, Proposition 1.2]). Let� be a
bounded domain in Cn , n > 2. LetM0 be a @�-open set that is a C2-smooth hy-
persurface. Assume thatM0 admits a defining function � that is of class C2 on
some open set containingM0 and that there exists a small constant � > 0 such that
L(�)(⇠ ; v) > �kvk2 at each ⇠ 2 M0 and for all v 2 Cn . LetM1  M0 be a
compact subset. Then, there exists an �-open neighbourhood, say V , ofM1 and a
constant C > 0 such that

�(z; v) > (1� C��(z)1/2)
�kvk2

��(z)1/2

for every z 2 V \� and for every v 2 Cn .
Remark 2.5. In fact, a much more precise estimate is provided by Ma and Balogh–
Bonk than the one stated in the above result. However, in order to state the latter
estimate, one would need to provide certain definitions that would be a digression
from the present discussion. The lower bound for � stated in Result 2.4 suffices
for our purposes.

The following result by Sibony will also play an important role in the proof of
Theorem 1.4:
Result 2.6 (paraphrasing [25, Proposition 6]). Let � be a domain in Cn and let
p 2 �. Suppose u is a negative plurisubharmonic function that is of class C2 in a
neighbourhood of p and assume that

L(u)(p; v) > ckvk2 8v 2 Cn,

where c is some positive constant. Then, there is a universal constant ↵ > 0 such
that

�(p; v) >
⇣ c
↵

⌘1/2 kvk

|u(p)|1/2
.

Remark 2.7. An important part of [25] is the construction of a pseudometric on
T 1,0�—which is known today as the Sibony pseudometric— that is dominated
by the Kobayashi pseudometric. The lower bound in Result 2.6 is actually a lower
bound for the Sibony pseudometric, from which the lower bound above for �(p; ·)
is obtained.

In concluding this section, we collect a few
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2.3. Facts relating to length-minimizing curves

The fundamental fact that we presuppose in this subsection is that if� is a bounded
domain inCn , then for any two points in� and for any � > 1 and  > 0 there exists
a (�, )-almost-geodesic joining these points: this is the content of Proposition 4.4
of [9] by Bharali–Zimmer. With this understanding, we first present:
Result 2.8 ( [9, Proposition 4.3]). Let � be a bounded domain in Cn . For any
� > 1 there exists a C = C(�) > 0 such that any (�, )-almost-geodesic (where
 > 0) � : [a, b] ! � is C-Lipschitz (with respect to the Euclidean distance).

We shall also need the following simple lemma, whose proof is essentially a
single line following from the definition of (�, )-quasi-geodesics and the triangle
inequality. To clarify: a (�, )-quasi-geodesic in� is a function � : I ! �, where
I is an interval, satisfying the property (1.6) stated in Definition 1.6.

Lemma 2.9. Let � be a bounded domain in Cn . If � : [a, b] ! � is a (1, )-
quasi-geodesic, then for all t 2 [a, b] we have

k�(� (a), � (b)) 6 k�(� (a), � (t)) + k�(� (t), � (b)) 6 k�(� (a), � (b)) + 3.

3. Caltrops exist

In this section, we shall construct explicit examples of caltrops. To begin with, we
will construct with some care a caltrop whose boundary has one outward-pointing
cusp. We shall then abstract features of this construction to describe briefly the
construction of caltrops with any (finite) number of outward-pointing cusps. Our
constructions will be in C2 but—as will become clear— this is only for simplicity
of notation.

We shall call the subset�\Vj , j = 1, . . . , N , where Vj is as in Definition 1.3,
a spike.

3.1. A caltrop with a single spike

Let A and � be positive numbers and let  : [�A,�] ! [0,+1) be a continuous
function that is of class C2 on (�A,�) such that

(1)  (t) ..= (t + A)p for every t 2 [�A,�B];
(2)  (t) ..=

p
�2 � t2 for every t 2 (0,�),

where B 2 (0, A) and p 2 (1, 3/2). We shall consider the following “solid of
revolution” given by

� ..= {(z, w) 2 C2 : |z|2 + |=w|2 < C (<w)2, �A < <(w) < �},

where C > 0 is a small constant whose magnitude we shall specify presently. Let
us write

⇢(z, w) ..= |z|2+|=w|2�C (<w)2, (z, w) 2 {(z, w) 2 C2 : �A < <(w) < �}.
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It is easy to check that ⇢ is a C2-smooth defining function for the real hypersurface
@� \ {(z, w) 2 C2 : �A < <(w) < �}.

We compute:

@2zz⇢ ⌘ 1,
@2zw⇢ = @2zw⇢ ⌘ 0,

@2ww⇢(z, w) =
1
2

�
C
2

⇣
 00(<w) (<w) +  0(<w)2

⌘
,

wherever ⇢ is of class C2. In particular, we have

@2ww⇢(z, w) �
1
2

= �
Cp(2p � 1)

2
(<w + A)2(p�1) % 0 as <w & �A. (3.1)

Furthermore, as  is of class C2 on (�A,�), we can, by choosing C > 0 suffi-
ciently small, ensure that

@2ww⇢(z, w) >
1
4

8w : �A < <w 6 0. (3.2)

From (3.1) and (3.2), we conclude that ⇢|{(z,w)2C2:�A<<w<�} is strictly plurisub-
harmonic for some positive constant � ⌧ 1. In particular, @� is strongly Levi-
pseudoconvex at each point on @� \ {(z, w) 2 C2 : �A < <w 6 0}. Of course,
by construction—by the condition (2) on  , to be precise— @� is strongly Levi-
pseudoconvex at each point on @�\ {(z, w) 2 C2 : <w > 0}. The other properties
that � must have for it to be a caltrop follow from the condition (1) on  .

3.2. A caltrop with many spikes

A slight modification of the details described in the previous subsection allows us
to show the existence of caltrops with many spikes. To this end, let us fix con-
stants A1, . . . AN > 1 and consider a collection of continuous functions  j :
[�A j ,� j ] ! [0,+1)—where each � j is a constant with � j > �1— that are
of class C2 on (�A j ,� j ), such that

 j (t) ..= (t + A j )
p j 8t 2 [�A j ,�Bj ],

and where Bj 2 (1, A j ), p j 2 (1, 3/2), j = 1, . . . , N . The precise values of the
constants � j and the properties of each  j

�
�
�Bj<t6� j

, j = 1, . . . , N , are deter-
mined by the construction that follows. Consider the “hypersurfaces of revolution”

H j ..= {(z, w) 2 C2 : |z|2 + |=w|2 = C j j (<w)2, �A j 6 <(w) 6 � j },

where each C j is a positive constant whose value we shall fix appropriately. Now,
consider the Euclidean unit sphere S3⇢C2 and pick N distinct points p1, . . . , pN 2
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S3, N > 2. Fix unitary transformationsU j (relative to the standard Hermitian inner
product on C2) such that

U j (0,�1) = p j

for each j = 1, . . . , N . Now consider the half-spaces 6 j ..= {(z, w) 2 C2 :
<(w) < �1+ � j }, where each � j > 0 is a small constant. Let

C j ..= S3 \ U j (6 j ),

j = 1, . . . , N ; these are small caps on the sphere. It follows from the discussion
in the previous subsection that, by adjusting the values of the constants Bj ,� j ,C j
and � j introduced above appropriately, we can define each  j , j = 1, . . . , N , in
such a way that the set

S ..=
⇣
S3 \ [N

j=1C j

⌘[⇣
[N
j=1U j (H j )

⌘

is a compact topological submanifold such that S \ {q1, . . . , qN }—where q j ..=
U j (0,�A j ), j = 1, . . . , N—is of class C2 and is strongly Levi-pseudoconvex at
each of its points. It is then easy to show that the bounded component of C2 \ S is
a caltrop.

The next subsection is, strictly speaking, unrelated to the issue of the existence
of caltrops. But, having shown that caltrops in C2 exist, it is easy to see that the
construction above can be generalized to Cn for every n > 2. We would like to
extend the Levi-form calculation in Subsection 3.1 to higher dimensions. This will
be needed in the proof of Theorem 1.4. Thus, we conclude this section with the
following:

3.3. A Levi-form calculation for caltrops

We would like— in proving Theorem 1.4— to observe the notation introduced in
Definition 1.3. Thus, we present the following lemma that follows a calculation
analogous to the one in Subsection 3.1.

Lemma 3.1. Let � ⇢ Cn , n > 2, be a caltrop. Let q denote one of the points
{q1, . . . , qN } ⇢ @� (say q j⇤) as in Definition 1.3— i.e., one of the tips of a spike of
�. Let  : [0, A] ! [0,+1), V 3 q and p 2 (1, 3/2) denote the data associated
to q by Definition 1.3. Let (z1, . . . , zn) represent the system of global holomorphic
coordinates centered at q (= q j⇤) obtained by the transformation of the product
coordinates on Cn by the map U j⇤ . Let us abbreviate (z1, . . . , zn�1, zn) as (z0, zn).
Then,

(1) The function

⇢(z) ..==(zn)2+kz0k2� (<(zn))2, (z1, . . . ,zn�1)2Cn�1, zn : 0<<(zn)<A,

is a defining function of U j⇤(@�) \ {(z1, . . . , zn) | 0 < <(zn) < A};
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(2) The Levi-form of ⇢ is given by

L(⇢)(z; v) = k (v1, . . . , vn�1) k2

+

✓
1
2

�
1
2
�
 00(<zn) (<zn) +  0(<zn)2

�
◆

|vn|
2

8z 2 U j⇤(@�) \ {(z1, . . . , zn) | 0 < <(zn) < A} and 8v 2 Cn.

Proof. A simple calculation reveals that d⇢(z) 6= 0 at each z 2 U j⇤(@�) \
{(z1, . . . , zn) | 0 < <(zn) < A}. This, together with the explicit description of
each spike of �, establishes that ⇢ is a (local) defining function for the stated piece
of @�.

The calculations required for determinining the Levi-form are analogous to
those in Subsection 3.1. Specifically:

@2z j z j⇢ ⌘ 1 for j = 1, . . . , n � 1,

@2z j zk⇢ ⌘ 0 for j 6= k, 1 6 j, k 6 n,

@2znzn⇢(z0, zn) =
1
2

�
1
2

⇣
 00(<zn) (<zn) +  0(<zn)2

⌘
,

wherever ⇢ is of class C2 —which is the case for each z : (z0, zn) 2 Cn�1 ⇥ {zn |
0 < <(zn) < A}. From this, the expression forL(⇢)(z; v) follows.

4. General properties of visibility domains

In this section, we shall demonstrate three properties of visibility domains with
respect to the Kobayashi distance. The first two results will seem to be of a slightly
technical nature. However, the three results together form the crux of the argument
underlying the observation—made in Section 1— that several results that were
shown for Goldilocks domains in [9] actually hold true for visibility domains with
respect to the Kobayashi distance.

The proof of the first of these results, Proposition 4.1, is based on an argu-
ment developed by Karlsson in [20]. Its near-resemblance to Theorems 1.8 and 1.9
is suggestive. Of course, the conclusion (4.2) is weaker than what constitutes a
Wolff–Denjoy-type theorem, but the domains appearing in Proposition 4.1 are—
in contrast to those in the above-mentioned theorems—merely visibility domains
with respect to the Kobayashi distance. Proposition 4.1 is an indication that some of
the results stated in [9] for Goldilocks domains might be true for visibility domains
with respect to the Kobayashi distance.

Proposition 4.1. Let � ⇢ Cn be a visibility domain with respect to the Kobayashi
distance. Let F : � ! � be a holomorphic map. Let (⌫ j ) j>1 and (µ j ) j>1 be two
sequences of positive integers with ⌫ j , µ j ! 1. Suppose

lim
j!1

k�(F⌫ j (o), o) = 1 and lim
j!1

k�(Fµ j (o), o) = 1 (4.1)
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for some o 2 �. Then there exists a ⇠ 2 @� such that
lim
j!1

F⌫ j (z) = ⇠ = lim
j!1

Fµ j (z) (4.2)

for every z 2 �.
Proof. By (4.1) and the fact that � is bounded, we can find a subsequence (⌫ j`)`>1
such that:
(a) k�(F⌫ j` (o), o) > k�(Fk(o), o) for every k 6 ⌫ j` , ` = 1, 2, 3, . . . ;
(b) F⌫ j` (o) ! ⇠ for some point ⇠ 2 @� as ` ! 1.
We now establish the following:
Claim: Let z 2 � and let (m j ) j>1 be a sequence of positive integers withm j ! 1
such that k�(Fm j (z), z) ! 1 as j ! 1. Suppose (m j`)`>1 is a subsequence
such that

Fm j` (z) ! ⌘ as ` ! 1,

where ⌘ is some point in @�. Then ⌘ = ⇠ .

Proof of claim. We shall assume ⇠ 6= ⌘ and aim for a contradiction. For simplicity
of notation, let us, for just this paragraph, relabel (⌫ j`)`>1 as (⌫ j ) j>1 —but with
the understanding that it represents the subsequence introduced at the beginning of
the proof. Also, relabel (m j`)`>1 as (m j ) j>1. Pick a sequence i j ! 1 such that
⌫i j > m j , j = 1, 2, 3, . . . Now let � j : [0, Tj ] ! � be a (1, 1)-almost-geodesic
with � j (0) = F⌫i j (o) and � j (Tj ) = Fm j (z), whose existence is guaranteed by
Proposition 4.4 of [9]. Since � is a visibility domain with respect to the Kobayashi
distance, and as ⇠ 6= ⌘ (by assumption), there exists an R > 0 so that

sup j>1 k�(o, � j ) 6 R,

where we write k�(o, � j ) ..= inf{k�(o, � j (t)) | t 2 [0, Tj ]}. We pick some t j 2
[0, Tj ] such that k�(o, � j (t j )) 6 R , j = 1, 2, 3, . . . Then, by Lemma 2.9 we have

k�(F⌫i j (o), Fm j (z)) > k�(F⌫i j (o), � j (t j )) + k�(� j (t j ), Fm j (z)) � 3
> k�(F⌫i j (o), o) + k�(o, Fm j (z)) � 3� 2R.

On the other hand
k�(F⌫i j (o), Fm j (z)) 6 k�(F⌫i j�m j (o), o)+k�(o, z) 6 k�(F⌫i j (o), o)+k�(o, z).
The first inequality is due to the triangle inequality and the fact that F is contractive
with respect to the Kobayashi distance and the second is due to the property (a).
We conclude that

k�(z, Fm j (z)) 6 k�(Fm j (z), Fm j (o)) + k�(Fm j (o), o) + k�(o, z) (4.3)
6 2R + 3+ 4k�(o, z),

which produces a contradiction. (The reader will notice that a more efficient bound
is possible above, but we opt for the 3-term upperbound in (4.3) because we will
need, and refer to, the idea behind this bound later.) Hence the claim.



A WEAK NOTION OF VISIBILITY 211

Taking z = o in the above claim, and letting (m j ) j>1 represent any subse-
quence (⌫ jk )k>1 of (⌫ j ) j>1 (respectively, (µ jk )k>1 of (µ j ) j>1) for which�
F⌫ jk (o)

�
k>1 is convergent (respectively,

�
Fµ jk (o)

�
k>1 is convergent), we conclude

that
lim
j!1

F⌫ j (o) = ⇠ = lim
j!1

Fµ j (o).

Now consider z 6= o. Arguing as in (4.3) and by the fact that F is contractive, we
have

k�(F⌫ j (z), z) > k�(F⌫ j (o), o) � 2k�(o, z) and
k�(Fµ j (z), z) > k�(Fµ j (o), o) � 2k�(o, z).

Therefore, if (m j ) j>1 represents any subsequence (⌫ jk )k>1 of (⌫ j ) j>1 (respec-
tively, (µ jk )k>1 of (µ j ) j>1) for which

�
F⌫ jk (z)

�
k>1 is convergent (respectively,�

Fµ jk (z)
�
k>1 is convergent), then from the last two inequalities and from (4.1), we

have
k�(Fm j (z), z) ! 1 as j ! 1.

We can therefore appeal again to our claim, whence, arguing as above, we have
(4.2).

It turns out that in many applications of visibility, such as the Wolff–Denjoy-
type theorems in this paper (as well as other applications which we shall address
in forthcoming work), knowing that limr!0+ M�(r) = 0 is of crucial importance.
This is guaranteed, by definition, whenever� is a Goldilocks domain. It is not clear
whether this is true for visibility domains with respect to the Kobayashi distance in
general. However, for many sub-families of visibility domains, it can be shown that
limr!0+ M�(r) = 0. The following theorem is a result of this type.

Theorem 4.2. Let � be a visibility domain with respect to the Kobayashi distance
that is taut. Then limr!0+ M�(r) = 0.

Proof. Assume that M�(r) 6! 0 as r ! 0. Since, by definition, M�(r) is mono-
tone, this implies that there exists a constant ✏0 > 0 such that M�(r) & ✏0 as
r & 0. Thus, there exist a sequence of positive numbers r1 > r2 > r3 > . . . such
that r⌫ ! 0 and, for each ⌫ 2 Z+, a point z⌫ 2 � such that 0 < ��(z⌫) 6 r⌫ and
such that:

• ✏0 6 M�(r⌫) < ✏0 + 1/⌫;
• 9v⌫ 2 T 1,0z⌫ � satisfying kv⌫k = 1 and

1
�(z⌫; v⌫)

> ✏0 �
1
⌫
. (4.4)

Owing to the definition of �, (4.4) implies that there exists, for each ⌫ 2 Z+, a
holomorphic map '⌫ 2 O(D;�) satisfying

'⌫(0) = z⌫, '0
⌫(0) 2 {t · v⌫ | t > 0} and k'0

⌫(0)k > ✏0 � 1/⌫.
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Passing to a subsequence and relabelling if necessary, we may assume:

(a) There exists a point ⇠ 2 @� such that z⌫ ! ⇠ ;
(b) There exists a map ' 2 O(D;�) such that '⌫ ! ' uniformly on compact

subsets.

The conclusion (b) is a consequence of Montel’s theorem. However, as z⌫ ! ⇠ 2
@�, it follows from the tautness of � that '(D) ⇢ @�.

It follows from the above discussion that k'0(0)k > ✏0. However, as '0
⌫ ! '0

uniformly on compact sets also, and as—owing to the fact that � is taut— � :
�⇥ Cn ! [0,+1) is continuous, see Result 2.2-(1), there exist a small constant
�1 > 0 and a number N1 2 Z+ such that

k'0(⇣ )k, k'0
⌫(⇣ )k > ✏0/2 8⇣ 2 D(0, �1) and 8⌫ > N1, (4.5)

�
�
'⌫(⇣ );'

0
⌫(⇣ )

�
6 2/✏0 8⇣ 2 D(0, �1) and 8⌫ > N1. (4.6)

Let ⇡ j denote the projection onto the j-th coordinate. By Cauchy’s estimates, the
magnitude of each of the derivatives of ⇡ j � '⌫ , j = 1, . . . , n, ⌫ > N1, is bounded
above by a quantity that depends only on supx :|x |=�1 |⇡ j �'⌫(x)|, �1, and the order of
the derivative in question, and which is independent of ⇣ if ⇣ 2 D(0; �1/2). Thus,
by a standard power-series argument and by (4.5), we can find a small constant
�2 2 (0, �1/2) and an integer N2 > N1 so that

k'⌫(⇣1) � '⌫(⇣2)k >
✏0
4

|⇣1 � ⇣2| 8⇣1, ⇣2 2 D(0, �2) and 8⌫ > N2. (4.7)

Let us now write

@� 3 ⌘ ..= '(�2/2) and w⌫ ..= '⌫(�2/2).

It follows from (4.7) that ⇠ 6= ⌘. Clearly, w⌫ ! ⌘. Let � : ([0, T ], 0, T ) !
(D, 0, �2/2) denote the geodesic with respect to the Poincaré distance on D from 0
to �2/2 that lies in [0, 1) ⇢ D. Let us define �⌫ : [0, T ] ! � as �⌫(t) ..= '⌫ � � (t).
We claim that each �⌫ , ⌫ > N2, is a (�, 0)-almost geodesic for an appropriate
� > 1. We first note that as � is the restriction of a diffeomorphic embedding of R
into D, there exists a constant r0 > 0 such that

|� (s) � � (t)| > r0|s � t | 8s, t 2 [0, T ]. (4.8)

We now estimate, for any s, t 2 [0, T ] and any ⌫ > N2:

k�
�
�⌫(s), �⌫(t)

�
> ck�⌫(s) � �⌫(t)k

>
c ✏0
4

|� (s) � � (t)| (by (4.7) above)

>
c ✏0 r0
4

|s � t | (by (4.8) above)
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Here, the constant c > 0 in the first inequality is as given by Result 2.1. On the
other hand, by the fact that each '⌫ is contractive relative to the Kobayashi distance,
we have for any s, t 2 [0, T ] (recall that the Poincaré distance on D is kD):

k�
�
�⌫(s), �⌫(t)

�
6 kD

�
� (s), � (t)

�

= |s � t |.

Furthermore, by (4.6), we have

�
�
�⌫(t); � 0

⌫(t)
�
6
2
✏0
sup⌧2[0,T ] |�

0(⌧ )|.

From these estimates, and by the fact that as each �⌫—being C1-smooth— is
absolutely continuous, we get that each �⌫ , ⌫ > N2, is a (�, 0)-almost geodesic
from z⌫ to w⌫ with

� = max
✓
1,

4
c ✏0 r0

,
2
✏0
sup⌧2[0,T ] |�

0(⌧ )|

◆
.

Since '(D) ⇢ @�, it follows that given any compact subset K ⇢ � there exists an
integer NK � 1 such that '⌫( D(0, �2/2) ) \ K = ? for every ⌫ > NK . But this,
together with our conclusions about �⌫ (for ⌫ > N2), contradicts the fact that � is
a visibility domain with respect to the Kobayashi distance. Hence our assumption
about M� must be false.

The last result in this section is one whose conclusion identifies a property that
is possessed by domains with smooth boundaries that are “sufficiently curved” in a
certain sense. However, Theorem 4.3 establishes that any taut visibility domain—
whose boundary is, in general far less well-behaved—also has the desirable prop-
erty alluded to.

Theorem 4.3. Let X be a connected complex manifold and let� ⇢ Cn be a visibil-
ity domain with respect to the Kobayashi distance that is taut. Suppose ('⌫)⌫>1 is a
sequence inO(X;�) that converges uniformly on compacts of X to a holomorphic
map  : X ! @�. Then  is a constant map.

Proof. Fix x 2 X . For any f 2O(X;�), let f 0 denote the holomorphic total deriva-
tive of f . Since ('⌫)⌫>1 converges uniformly on compacts to  , it follows that
'0
⌫(x)! 0(x) (the easiest way to understand this is to equip X with some hermitian
metric; the choice of metric is irrelevant to the proof). Fix a vector v02(T 1,0x X)\{0}.
We claim that, given a ⌫ 2 Z+, k'0

⌫(x)v0k 6 X (x, v0)M�

�
��('⌫(x))

�
. There is

nothing to prove if v0 2 Ker('0
⌫(x)). Thus, assume that v0 /2 Ker('0

⌫(x)). We
estimate:

k'0
⌫(x)v0k

�
�
'⌫(x);'0

⌫(x)v0
� =

1

�

⇣
'⌫(x);

'0
⌫(x)v0

k'0
⌫(x)v0k

⌘ 6 M�

�
��('⌫(x))

�
.



214 GAUTAM BHARALI AND ANWOY MAITRA

The inequality on the right side is due to the definition of M�. Therefore

k'0
⌫(x)v0k 6 �

�
'⌫(x);'0

⌫(x)v0
�
M�

�
��('⌫(x))

�
6 X (x; v0)M�

�
��('⌫(x))

�
,

which is the desired claim. The second inequality is due the metric-decreasing
property of holomorphic maps. By hypothesis, ��('⌫(x)) ! 0 as ⌫ ! 1. Since
� is taut, it follows from Theorem 4.2 that M�

�
��('⌫(x))

�
! 0 as ⌫ ! 1.

Therefore, from the last inequality, we see that '0
⌫(x)v0 ! 0 as ⌫ ! 1. This in

turn implies that  0(x)v0 = 0. Now v0 2 (T 1,0x X) \ {0} was arbitrary, whence we
get  0(x) ⌘ 0. As the above x 2 X was arbitrary, and as X is connected, it follows
that  is a constant.

5. The proof of Theorem 1.5

This section is devoted to proving Theorem 1.5. To do so, we first need a technical
lemma.

Lemma 5.1. Let f be as in Theorem 1.5. Fix constants � > 1 and  > 0. Then,
given ✏ > 0, there exist constants �1 < a0 < b0 < +1 such that

Z a0

�1
M�

⇣ 1
f �1

�
(1/2�)|t | � (/2)

�
⌘
dt < ✏,

Z +1

b0
M�

⇣ 1
f �1

�
(1/2�)t � (/2)

�
⌘
dt < ✏.

Proof. The result is a consequence of the change-of-variable formula, using

r ..=
1

f �1
�
(1/2�)|t | � (/2)

�

for the first integral, and

r ..=
1

f �1
�
(1/2�)t � (/2)

�

for the second. We omit the routine computations that these changes of variable
necessitate. The inequalities follow from the integrability condition (1.2).

We are now in a position to give the:

Proof of Theorem 1.5. We proceed by contradiction. Assume thus that there exist
constants � > 1 and  > 0, a pair of distinct points ⇠, ⌘ 2 @�, neighbourhoods V
and W of ⇠ and ⌘, respectively, in � with V \ W = ?, and a sequence (�⌫)⌫>1 of
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(�, )-almost-geodesics, �⌫ : [a⌫, b⌫] ! �, such that �⌫(a⌫) 2 V and �⌫(b⌫) 2 W
for all ⌫ and such that

max
t2[a⌫ ,b⌫ ]

��(�⌫(t)) ! 0 as ⌫ ! 1.

By re-parametrizing, we can assume that, for all ⌫, a⌫ 6 0 6 b⌫ and that

��(�⌫(0)) = max
t2[a⌫ ,b⌫ ]

��(�⌫(t)).

By Result 2.8, there exists a C < 1 such that every �-valued (�, )-almost-
geodesic is C-Lipschitz with respect to the Euclidean distance. Therefore, by using
the Arzela–Ascoli theorem and passing to an appropriate subsequence, we may as-
sume:

• a⌫ ! a 2 [�1, 0] and b⌫ ! b 2 [0,+1];
• (�⌫)⌫>1 converges locally uniformly on (a, b) to a continuous map � : (a, b) !
�;

• (�⌫(a⌫))⌫>1 converges to ⇠ 0 2 V ;
• (�⌫(b⌫))⌫>1 converges to ⌘0 2 W .

Clearly, ⇠ 0 6= ⌘0 because V \ W = ?. We can conclude from the fact that

k�⌫(a⌫) � �⌫(b⌫)k 6 C(b⌫ � a⌫) 8⌫ 2 Z+

that a < b.

Claim: If ✓ : [s1, s2] ! � is a (�, )-almost-geodesic, then for almost every
t 2 [s1, s2], k✓ 0(t)k 6 �M�(��(✓(t))).

Proof of claim. By the definition of a (�, )-almost-geodesic we have �(✓(t),
✓ 0(t)) 6 � for almost every t 2 [s1, s2]. If ✓ 0(t) = 0, then the claim is trivially true.
If ✓ 0(t) 6= 0, we have

�

✓
✓(t),

✓ 0(t)
k✓ 0(t)k

◆
6

�

k✓ 0(t)k
.

So
k✓ 0(t)k 6 � ·

1

�

⇣
✓(t), ✓ 0(t)

k✓ 0(t)k

⌘ 6 �M�

�
��(✓(t))

�
.

We first assert that � : (a, b) ! � is constant. To prove this, we use the fact that
M�(t) & 0 as t & 0. With this, the proof proceeds exactly along the lines of the
proof of Claim 1 in [9, Section 5]. Hence, we omit the proof.
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We shall now show that � is not constant. Our argument involves the study of
two cases.
Case 1. Both a and b are finite.
In this case, we first define the C-Lipschitz maps e�⌫ : [a, b] ! � obtained by
restricting each �⌫ to [a⌫, b⌫] \ [a, b] and then extending the restricted map contin-
uously to [a, b] by defining the extension to be a constant on the intervals [a, a⌫] and
[b⌫, b] whenever a < a⌫ or b⌫ < b. We can then infer by a standard argument that
� extends to a continous mape� : [a, b] ! �. We havee� (a) = ⇠ 0 6= ⌘0 = e� (b).
By continuity ofe� , it follows that e� |(a,b) is non-constant.
Case 2. Either a = �1 or b = +1.
We make a couple of preliminary observations. For every ⌫ 2 Z+ and every t 2
[a⌫, b⌫],

1
�
|t | �  6 k�(�⌫(0), �⌫(t)) 6 k�(�⌫(0), z0) + k�(z0, �⌫(t))

6 2 f
✓

1
��(�⌫(t))

◆
,

because ��(�⌫(0)) > ��(�⌫(t)).
Let us first consider the case when b = +1. By the properties of the sequence

(�⌫)⌫>1, it follows that there exists N 2 Z+ and a constant B � 1 such that

1
2�

|t | �


2
2 range( f ) 8t 2 (B, b⌫] and 8⌫ > N .

Thus, by the fact that f is strictly increasing, we get:

f �1
✓
1
2�

|t | �


2

◆
6

1
��(�⌫(t))

8t 2 (B, b⌫] and 8⌫ > N , (5.1)

in case b = +1. If a = �1, we can argue in exactly the same way to find a
constant A � 1 such that

f �1
✓
1
2�

|t | �


2

◆
6

1
��(�⌫(t))

8t 2 [a⌫,�A) and 8⌫ > N (5.2)

(where N is exactly as above).
At this juncture, we shall assume that a = �1 and b = +1. This is the

principal sub-case; we shall merely indicate the changes that would be needed in
the argument that follows in case either one of a or b is finite. With this assumption,
we have, by monotonicity of M� and from (5.1) and (5.2):

M�

�
��(�⌫(t))

�
6 M�

 
1

f �1
�
(1/2�)|t | � (/2)

�

!



A WEAK NOTION OF VISIBILITY 217

for evey t 2 [a⌫,�A) [ (B, b⌫] and for every ⌫ > N . So, finally, by our claim
above, we conclude that

k� 0
⌫(t)k 6 �M�

�
��(�⌫(t))

�

6 �M�

⇣ 1
f �1

�
(1/2�)|t | � (/2)

�
⌘

for a.e. t 2 [a⌫,�A) [ (B, b⌫] and 8⌫ > N .

(5.3)

Using Lemma 5.1, we choose a0 2 (�1,�A) and b0 2 (B,+1) such that

�

Z a0

�1
M�

⇣ 1
f �1

�
(1/2�)|t | � (/2)

�
⌘
dt

+ �

Z +1

b0
M�

⇣ 1
f �1

�
(1/2�)t � (/2)

�
⌘
dt < k⇠ 0 � ⌘0k.

Then

k� (b0)�� (a0)k

= lim
⌫!1

k�⌫(b0)��⌫(a0)k

> lim sup
⌫!1

�
k�⌫(b⌫)��⌫(a⌫)k�k�⌫(a⌫)��⌫(a0)k�k�⌫(b⌫)��⌫(b0)k

�

> k⇠ 0 � ⌘0k � lim sup
⌫!1

Z a0

a⌫
k� 0
⌫(t)kdt � lim sup

⌫!1

Z b⌫

b0
k� 0
⌫(t)kdt

> k⇠ 0 � ⌘0k � lim sup
⌫!1

�

Z a0

a⌫
M�

⇣ 1
f �1

�
(1/2�)|t | � (/2)

�
⌘
dt

� lim sup
⌫!1

�

Z b⌫

b0
M�

⇣ 1
f �1

�
(1/2�)t � (/2)

�
⌘
dt (using (5.3))

= k⇠ 0 � ⌘0k � �

Z a0

�1
M�

⇣ 1
f �1

�
(1/2�)|t | � (/2)

�
⌘
dt

� �

Z +1

b0
M�

⇣ 1
f �1

�
(1/2�)t � (/2)

�
⌘
dt

> 0.

This shows that � is not constant.
If a is finite, then by an analogue of the argument described in Case 1 (by

constructing auxiliary maps that are C-Lipschitz on [a, 0]), we infer that � extends
to a continuous map e� : [a,+1). We now estimate k� (b0) �e� (a)k—with b0 2
(B,+1) chosen appropriately so that we can argue as in the previous paragraph—
to get k� (b0)�e� (a)k > 0. An analogous description can be given for the argument
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in case b is finite. This completes the argument for Case 2, with the conclusion that
� is not constant.

This last assertion produces a contradiction. Thus, the assumption made at the
beginning must be false, which completes the proof.

6. A family of planar comparison domains

In this section we take the first step in showing that caltrops have the properties
stated in Theorem 1.5. The essential idea is as follows: we first explicitly calculate
the Kobayashi distance on a model planar domain D. Then, given a caltrop� ⇢ Cn ,
n � 2, we shall affinely embed copies of D into� in such a way that every point of
� that is sufficiently close to @� is contained in one of these embedded domains.
Then, the distance-decreasing property of holomorphic mappings for the Kobayashi
distance could be used to estimate the Kobayashi distance on �.

Given the geometry of the boundary of a caltrop, the model comparison domain
D that we need will be bounded, symmetric about the real axis, have 0 as a boundary
point and the tip of an outward-pointing cusp. In fact, it will be useful to construct
a family of model planar domains having the latter properties. To this end, given
a, h > 0, define the following domains in C:

Sa,h ..= {z = x + iy 2 C | x > a, �h < y < h}. (6.1)

Let us denote the domains that we are interested in by Q↵,a,h , where Q↵,a,h is the
image of Sa,h under the following biholomorphisms, composed in the order given
below:

inv(z) ..= 1
z

8z 2 C \ {0},

�↵(z) ..= z↵ 8z 2 inv(Sa,h).

Here ↵ is a real number greater than 1, and a, h > 0 are such that �↵ is in fact
a biholomorphism. That a, h > 0 can be so chosen follows from an elementary
calculation. Specifically, we compute:

inv(Sa,h) =
�
C \ D(�i/2h, 1/2h)

�
\
�
C \ D(i/2h, 1/2h)

�
\ D(1/2a, 1/2a).

Let us denote inv(Sa,h) by Ta,h .
We make a simple observation which will be useful in the proposition below.

The region Ta,h contains 0 in its boundary and has a quadratic cusp at 0. This means
that there exist constants c1, c2 > 0 such that, for every z 2 @Ta,h ,

c1<(z)2 6 =(z) 6 c2<(z)2, or
�c2<(z)2 6 =(z) 6 �c1<(z)2, (6.2)
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depending on whether =(z) > 0 or =(z) 6 0, provided<(z) is sufficiently small. In
fact, by straightforward calculations we see that for some � > 0 sufficiently small,
@Ta,h \ {z 2 C | 0 6 <(z) 6 �} = gr( f ) [ gr(� f ), where

f (x) = hx2 + O(x4) as x ! 0+, (6.3)

with the understanding that z = x + iy. In this section, gr(·) will denote the graph
of a specified function.

The following proposition describes the features of the (family of) domains
Q↵,a,h that will be relevant to estimating Kobayashi distances— in the manner
hinted at above—on caltrops.

Proposition 6.1. Fix ↵ > 1 and let Ta,h and Q↵,a,h be as described above—with
a, h > 0 appropriately chosen. Set p ..= (1+ ↵)/↵. Then:

(1) There exist constants ✏,C1,C2 > 0 such that, for every z 2 @Q↵,a,h \ {z 2 C |
0 6 <(z) 6 ✏}, we have

C1<(z)p 6 =(z) 6 C2<(z)p, or
�C2<(z)p 6 =(z) 6 �C1<(z)p,

depending on whether =(z) > 0 or =(z) 6 0.
(2) If we fix a constant M > 2, then we can choose an ✏ > 0 sufficiently small so

that the inequalities in (6.1) hold true with C2 ..= Mh↵. Furthermore, for a
given ↵ > 1 and h > 0, this choice of ✏ decreases as a % +1.

(3) Fix some point x0 2 Q↵,a,h \ R. There exists a constant C > 0, which depends
on x0, such that

kQ↵,a,h (x0, x) 6 C +
⇡

4h
x�1/↵ 8x 2 (0, x0).

Proof. To prove (6.1), we must examine the image of Ta,h under �↵ close to 0 2
@Ta,h . Let c1, c2 be the constants given by (6.2), and let the function f be as
introduced just prior to (6.3). We examine the images of gr( f ) and gr(� f ) under
�↵ . Let us, for example, examine the image of gr( f ) under �↵ . An arbitrary element
of gr( f ) that is close to 0 can be written as x + iy, where x > 0 and c1x2 6 y 6
c2x2. For x > 0 and sufficiently small, we compute:

�↵(z) = (x + iy)↵

= x↵
✓
1+

1X

j=1

(�1) j

(2 j)!

2 j�1Y

⌫=0
(↵ � ⌫)

y2 j

x2 j

◆

+ i x↵
✓ 1X

j=0

(�1) j

(2 j+1)!

2 jY

⌫=0
(↵ � ⌫)

y2 j+1

x2 j+1

◆
.
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Using the fact that c1x2 6 y 6 c2x2, it is easy to see that

<(�↵(z)) = x↵ + O(x2+↵),

c1↵x1+↵(1� O(x2)) 6 =(�↵(z)) 6 c2↵x1+↵(1+ O(x2))

for z = x + iy 2 gr( f ) and for x > 0 sufficiently small.
It follows from this that we can find constants ✏,C1,C2 > 0 such that for all

w 2 @Q↵,a,h with <(w) 6 ✏ and =(w) > 0,

C1
�
<(w)

�p 6 =(w) 6 C2
�
<(w)

�p
.

From this and the fact that, if z 2 @Ta,h \ {=(z) 6 0}, then z 2 gr(� f ) (when <(z)
is sufficiently small), part (1) follows.

Part (2) is elementary and follows from the manner in which dom( f ), by con-
struction, depends on a, from (6.3), and from the estimates in the last paragraph.

We now address the Kobayashi-distance inequality that we need. We have a
biholomorphism 8↵,a,h fromQ↵,a,h onto D, given by

8↵,a,h = f4 � f3 � f2 � f1 � inv �
�
�↵|Ta,h

��1
,

where

f1(z) = i(z � a) 8 z 2 Sa,h,

f2(z) =
⇡z
2h

8 z 2 {w 2 C | �h < <(w) < h, =(w) > 0},

f3(z) = sin(z) 8 z 2 {w 2 C | �⇡/2 < <(w) < ⇡/2, =(w) > 0},

f4(z) =
z � i
z + i

8 z 2 {w 2 C | =(w) > 0}.

The explicit expression for 8↵,a,h is

8↵,a,h(z) =
sin
⇣
⇡ i
2h
� 1
z1/↵ � a

�⌘
� i

sin
⇣
⇡ i
2h
� 1
z1/↵ � a

�⌘
+ i

8 z 2 Q↵,a,h . (6.4)

Observe that 8↵,a,h maps the closed and bounded interval Q↵,a,h \ R homeomor-
phically onto [�1, 1]. Furthermore, it is easy to check that 8↵,a,h maps the point

o↵,a,h ..= o ..= 1/
�
(2h/⇡) log(

p
2+ 1) + a

�↵
(6.5)

of Q↵,a,h to 0 and that if x 2 Q↵,a,h \ R is less than o then 8↵,a,h(x) 2 (0, 1).
Therefore, for all such x ,

kQ↵,a,h (o, x) = kD
�
0,8↵,a,h(x)

�
=
1
2
log

✓
1+8↵,a,h(x)
1�8↵,a,h(x)

◆
.
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Using (6.4), we obtain

1
2
log

✓
1+8↵,a,h(x)
1�8↵,a,h(x)

◆

=
1
2
log

✓
exp

⇢
⇡

2h

⇣ 1
x1/↵

�a
⌘�

� exp
⇢
�
⇡

2h

⇣ 1
x1/↵

�a
⌘�◆

�
log 2
2

6
1
2
log

✓
exp

⇢
⇡

2h

⇣ 1
x1/↵

�a
⌘�◆

6
⇡

4h
x�1/↵.

From this and the triangle inequality, (6.1) of our proposition follows.

The next few lemmas establish some basic observations that will—given a
caltrop� ⇢ Cn , n � 2—enable us to affinely embed copies ofQ↵,a,h , for suitable
choices of the parameters ↵, a and h, into� in the manner hinted at in the beginning
of this section. (The actual estimates showing that caltrops possess the properties
stated in the General Visibility Lemma will be obtained in the next section.) A note
about our notation: in the lemmas that follow, the point o will be as introduced in
(6.5), and will be associated to the specific Q↵,a,h occurring in each lemma. Also,
the lemmas below hold true for the parameter p 2 (1, 2), and will be proved as
such. In the next section, where caltrops make an appearance, we shall restrict p to
(1, 3/2).

Lemma 6.2. Suppose ✏ > 0 and � : [0, ✏) ! R is a continuous, strictly increasing
function that is differentiable on (0, ✏), such that �0 is increasing and such that
�(0) = 0. Then, for every (x, y) 2 [0,+1) ⇥ [0,+1) such that x + y < ✏,
�(x + y) > �(x) + �(y).

The proof of the above lemma is an elementary exercise in calculus.

Lemma 6.3. Let  : [0, A] ! [0,+1) be a continuous function that is C2 on
(0, A), where A > 0. Let p 2 (1, 2). Assume furthermore that:

• There exists a constant C > 1 such that

(1/C)x p 6  (x) 6 Cx p 8 x 2 [0, A];

•  is strictly increasing;
•  0 is increasing on (0, A).

Write R ..= {z 2 C | 0 < <(z) < A, |=(z)| <  (<(z))}. Then there exist a
constant B 2 (0, A), a compact subset K that intersects {z 2 C | <(z) = A} and
such that K \ {z 2 C | <(z) = A}  R, and constants a, h > 0 such that for each
x + iy 2 R with x 6 B, we have

(1) ( �1(|y|) + iy) +Q1/(p�1),a,h ✓ R;
(2)  �1(|y|) + o > x;
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(3) ( �1(|y|) + iy) + o 2 K ;
(4) �R(x + iy) 6 | �1(|y|) � x |.

Proof. It follows from Proposition 6.1 and the observation made prior to it that we
may fix a constant M > 2 such that for every ↵ > 1 and every a, h > 0 there exists
an ✏ ⌘ ✏(↵, a, h) > 0 such that

Q↵,a,h ⇢ {w 2 C | 0 < <(w) < ✏, |=(w)| < Mh↵(<(w))(1+↵)/↵} =.. S↵,a,h

and such that, for any given ↵ > 1 and h > 0, ✏ ! 0 as a ! +1. We let
↵ ..= 1/(p � 1). We note that, by the geometry of Q↵,a,h , the ✏ with the above
properties does not decrease as we decrease h. Hence, we can choose a and h such
that ✏ < A/2 and Mh↵ < 1/C . Now, fix a constant B, 0 < B < A so that

B < min(o, (✏/2)).

Let z = x + iy 2 R and x 6 B. We consider the setQ↵,a,h + ( �1(|y|) + iy). An
arbitrary element of this set is of the form ( �1(|y|)+ s)+ i(y+ t), where s+ i t 2
Q↵,a,h . Since Q↵,a,h ⇢ S↵,a,h by construction, 0 < s < ✏ and |t | < Mh↵s p. This
element is inR if and only if

0 <  �1(|y|) + s < A and |y + t | <  
�
 �1(|y|) + s

�
.

Now 0 6  �1(|y|) < x 6 B. By our choice of B, we have 0 <  �1(|y|) + s <
(✏/2) + ✏ < A.

Thus, to establish part (1), we must show that |y + t | <  
�
 �1(|y|) + s

�
. As

R is symmetric about the real axis, it suffices to deal with the case y > 0, t > 0.
Notice that  satisfies the hypothesis of Lemma 6.2. We have

 
�
 �1(|y|) + s

�
> y +  (s) (by Lemma 6.2)
> y + (1/C)s p (by hypothesis).

Recall that Mh↵ < 1/C . Therefore,

|y + t | = y + t < y + (1/C)s p 6  ( �1(|y|) + s).

This shows that ( �1(|y|)+ s)+ i(y+ t) 2 R, for y, t > 0. In view of our remark
on the symmetry ofR, this completes the proof of part (1).

For any x + iy as in the previous paragraphs,  �1(|y|)+o > B > x . The first
inequality follows from our choice of B. This proves part (2).

Define K ..= {z 2 C | o 6 <(z) 6 A, |=(z)| 6  (<(z) � o)}. Write
RB ..= {z 2 R | <(z) 6 B}. For any x + iy 2 RB :

o 6 o+  �1(|y|) < o+ x 6 o+ B < 2o < A.

Furthermore, |y| =  
�
( �1(|y|) + o) � o

�
, whence o + ( �1(|y|) + iy) 2 K .

Clearly, K intersects {z 2 C | <(z) = A} and K \ {z 2 C | <(z) = A}  R. This
proves part (3).
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Finally, for x + iy 2 RB , �R(x + iy) 6 |( �1(|y|) + iy) � (x + iy)| =
| �1(|y|) � x | because  �1(|y|) + iy 2 @R. This proves part (4) and completes
the proof.

The next lemma is essentially a parametrized version of the one above. It is
related to embedding the model region Q↵,a,h into a caltrop within a spike (see
Section 3 to recall terminology), as we shall see in Section 7. A note about our
notation: we shall abbreviate (z1, . . . , zn�1, zn) 2 Cn as (z0, zn).

Lemma 6.4. Let  : [0, A] ! [0,+1) be as in Lemma 6.3. Let

D ..=
�
z 2 Cn | 0 < <(zn) < A, =(zn)2 + kz0k2 <  (<(zn))2

 
.

Let w0 2 Cn�1 and let

Rw0 ..= ⇡n
⇥�

(w0, 0) + {0n�1} ⇥ C
�
\ D

⇤
.

Write ↵ = 1/(p � 1). Then there exist constants a, h, B > 0 and a compact
subset K of {z 2 Cn | <(zn) 6 A} that intersects {z 2 Cn | <(zn) = A} and
so that K \ {z 2 Cn | <(zn) = A}  D, such that for every w0 2 Cn�1 with
kw0k <  (B/2), and every ⇣ 2 Rw0 with <(⇣ ) 6 B, one has

(1)
�
 �1(S(⇣, w0) ) + i=(⇣ )

�
+Q↵,a,h ✓ Rw0;

(2)  �1(S(⇣, w0) ) + o > <(⇣ );
(3)

�
 �1(S(⇣, w0) ) + i=(⇣ )

�
+ o 2 ⇡n

⇥�
(w0, 0) + {0n�1} ⇥ C

�
\ K

⇤
;

(4) �D((w0, ⇣ )) 6 |<(⇣ ) �  �1�S(⇣, w0)
�
|,

where S(⇣, w0) ..=
p

=(⇣ )2 + kw0k2 and o is the point inQ↵,a,h given by (6.5).

Remark 6.5. The following expression forRw0 can easily be obtained:
�
⇣ 2 C |  �1(kw0k) < <(⇣ ) < A, =(⇣ )2 + kw0k2 <  (<(⇣ ))2

 
.

We see that Rw0 6= ? if and only if kw0k <  (A). In particular, the sets Rw0

appearing in the conclusions of the above lemma are non-empty. We also note that
R0n�1 is precisely the R of the last lemma. We shall take the parameters a, h and
B, whose existence is asserted above, to be precisely the parameters obtained from
the domainR = R0n�1 using Lemma 6.3 above.

Proof. For simplicity of notation, we shall write c ..= 1/C . The w0 = 0n�1 case is
precisely the content of Lemma 6.3. Let a, h and B be as given by Lemma 6.3. We
extract from the proof of Lemma 6.3 a couple of simple facts that follow from this
choice of parameters, and which we shall need in this proof:

s + i t 2 Q↵,a,h ) B + s < 3A/4 < A and |t | < cs p; (6.6)
o > B. (6.7)



224 GAUTAM BHARALI AND ANWOY MAITRA

We now consider the case w0 6= 0n�1. Fix a point ⇣ 2 Rw0 , and let <(⇣ ) 6 B.
That there is such a point follows from our bound on kw0k. An arbitrary element of
( �1(S(⇣, w0)) + i=(⇣ )) +Q↵,a,h is of the form

�
 �1(S(⇣, w0)) + s

�
+ i
�
=(⇣ ) + t

�
,

where s + i t 2 Q↵,a,h . Such a point belongs toRw0 if and only if

(a)  �1(S(⇣, w0)) + s < A, and
(b) kw0k2 + (=(⇣ ) + t)2 <

�
 ( �1(S(⇣, w0)) + s)

�2.

By symmetry, we only need to deal with =(⇣ ) > 0. We have =(⇣ )2 + kw0k2 <
 (<(⇣ ))2. As <(⇣ ) 6 B, we have =(⇣ )2 + kw0k2 <  (B)2. Therefore

 �1(S(⇣, w0)) + s < B + s < A.

The last inequality follows from (6.6). This verifies (a) above. We now verify (b).
We have

 ( �1(S(⇣, w0)) + s) > S(⇣, w0) + cs p,
by an application of Lemma 6.2. Hence

�
 ( �1(S(⇣, w0)) + s)

�2
� =(⇣ )2 � kw0k2 > 2cs pS(⇣, w0) + c2s2p.

So (b)will follow if we can show that 2=(⇣ )t+t2 < 2cs pS(⇣, w0)+c2s2p. But this
last inequality is obvious in view of (6.6). Thus, (b) is proved, and with it, part (1).

We note that

 �1�S(⇣, w0)
�
+ o >  �1(=(⇣ )) + o > B > <(⇣ ).

The second inequality above follows from (6.7). This proves part (2).
Let K ..= {(w0, ⇣ ) 2 Cn | o 6 <(⇣ ) 6 A, S(⇣, w0) 6  (<(⇣ ) � o)}. Clearly,

K is a compact subset of {z 2 Cn | <(zn) 6 A} that intersects {z 2 Cn | <(zn) =
A}, and K \ {z 2 Cn | <(zn) = A}  D. Fix w0 such that kw0k <  (B/2).
Consider a point ⇣ 2 Rw0 such that <(⇣ ) 6 B. If we write

⌘ ..=
�
 �1(S(⇣, w0)) + i=(⇣ )

�
+ o,

then we have

 �1(kw0k) + o 6 <(⌘) < <(⇣ ) + o 6 B + o < A.

This last inequality follows from (6.6) (since o 2 Q↵,a,h). Furthermore, S(⌘, w0) =
S(⇣, w0) =  (<(⌘) � o). Thus, ⌘ 2 ⇡n

⇥�
(w0, 0) + {0n�1} ⇥ C

�
\ K

⇤
, which

establishes part (3).
As for part (4), if (w0, ⇣ ) is as in the last paragraph, then  �1(S(⇣, w0)) +

i=(⇣ )2@Rw0 . Therefore �D((w0, ⇣ ))6 dist(⇣, C\Rw0)6 |<(⇣ )� �1(S(⇣, w0))|.
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7. Caltrops are visibility domains with respect to the Kobayashi metric

This section is devoted to the proof of Theorem 1.4. Our proof will rely on Theo-
rem 1.5. Recall that, in the discussion related to this theorem, we had mentioned
that the utility of Theorem 1.5 lies in that it allows one to identify visibility domains
that do not possess the Goldilocks property. The concluding paragraphs of this sec-
tion bear this fact out: we shall show that caltrops are not Goldilocks domains.

We shall need the following basic result:

Lemma 7.1. Let  : [0, A] ! [0,+1) denote one of the functions  j occurring
in Definition 1.3. Then  is differentiable at 0 and  0 is continuous on [0, A),
whence limx!0+  

0(x) = 0.

Proof. That 0(0) exists and equals 0 follows simply from the bounds on . Hence,
 0 extends to a function on [0, A). The nature of the discontinuities of the derivative
of a univariate function is such that, since  0 is increasing on (0, A), it cannot have
a discontinuity at 0.

The proof of Theorem 1.4. Since we will need Theorem 1.5 to show that a caltrop
� ⇢ Cn is a visibility domain with respect to the Kobayashi distance, we will
require two different types of estimates. We shall therefore divide our proof into
several steps. We begin with the following preliminary remark: if F and G are
two non-negative functions that depend on several parameters, then we shall write
F & G to mean that there exists some constant C that is independent of those
parameters such that G 6 C · F . The expression F t G would mean that F & G
and G & F .

Step 1. A lower bound for �(w, ·) for w contained in a spike
Given the set of exceptional points {q1, . . . , qN } ⇢ @�, fix an exceptional point q j⇤ .
Let p j⇤ 2 (1, 3/2), U( j⇤) 2 U(n) and  j⇤ : [0, A j⇤] ! [0,+1) be the data asso-
ciated to this exceptional point given by Definition 1.3. Since � is invariant under
biholomorphisms of �, and since the the unitary transformations U( j) = U0

j—
where U j , j = 1, . . . , N , are the holomorphic maps occurring in Definition 1.3—
preserve the (Euclidean) norms of vectors, we shall, for simplicity of notation, drop
the sub/superscript “ j⇤ ” from the above-mentioned data and assume without loss
of generality that

� \ Vj⇤ =
�
z 2 Cn | 0 < <(zn) < A, =(zn)2 + kz0k2 <  (<(zn))2

 

(so, in the notation just explained, q j⇤ = q = 0).
We shall now construct a negative plurisubharmonic function on � that has

an explicit form on a substantial portion of � \ Vj⇤ . This will allow us to use
Result 2.6 to obtain a lower bound on �(w, ·) on a portion of � \ Vj⇤ . That there
exist such functions does not follow immediately from the existing theory owing
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to the presence of singularities in @�. We shall thus construct a function with the
desired properties from basic principles. To this end, let us write

⇢(z) ..= =(zn)2 + kz0k2 �  (<(zn))2 8z 2 � \ Vj⇤ .

By the Levi-form calculation in Lemma 3.1, by Lemma 7.1, and owing to the prop-
erties of  , we see that there exists a constant A0 2 (0, A] such that

L(⇢)(z; v)>kv0k2+ 4�1|vn|
2 8(z, v)2(�\ Vj⇤)⇥ Cn : 0<<(zn)< A0. (7.1)

Let U ( j), 1 6 j 6 4, be connected open neighbourhoods of 0 (which represents
q j⇤ in our present coordinates) such that:

• U (1) b U (2) b U (3) b U (4);
• U ( j) \� = {z 2 � \ Vj⇤ | 0 < kzk < j A0/4}, 1 6 j 6 4.

Let �1 2 C1(Cn) be such that �1 : Cn ! [0, 1] and satisfies

�1|U (1) ⌘ 0, and �1|Cn\U (2) ⌘ 1.

Let � be a smooth, nondecreasing convex function on [0,+1) satisfying �(x) = 0
for each x 2 [0, (A0)2/16] that grows very gradually in ((A0)2/16, (A0)2/4] and
very rapidly in [9(A0)2/16,+1) in a manner that we shall specify presently. Set
M�

..= supz2� �(kzk2) and write

8(z) ..= �(kzk2) � M� 8z 2 �.

Clearly, 8 is plurisubharmonic. We compute:

L(⇢ + �18)(z; v) = L(⇢)(z; v) + �1(z)L(8)(z; v)

+ 2<
h nX

j,k=1
@ j�1 @k8(z)v jvk

i
+8(z)L(�1)(z; v)

> kv0k2 + 4�1|vn|
2 � 2

nX

j,k=1

�
�@ j�1 @k8(z)

�
� |v j | |vk |

� |8(z)| |L(�1)(z; v)| 8(z, v)2
�
(U (2)\U (1)) \�

�
⇥ Cn.

We can drop the term �1(z)L(8)(z; v) altogether from the right-hand side of the
above inequality since it is non-negative. We now state the first of the properties of
� alluded to above: � grows so slowly in the interval ((A0)2/16, (A0)2/4] that

L(⇢+�18)(z; v)�2�1kv0k2+8�1|vn|
2 8(z, v)2

�
(U (2)\U (1))\�

�
⇥Cn. (7.2)

Now pick �2 2 C1
c (Cn) such that �2 : Cn ! [0, 1] and satisfies

�2|U (3) ⌘ 1, and �2|Cn\U (4) ⌘ 0.
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A Levi-form calculation very similar to the one above gives us

L(�2⇢ +8)(z; v) > �0(kzk2)kvk2 + �00(kzk2) |hz, vi|2

� 2
nX

j,k=1

�
�@ j�2 @k⇢(z)

�
� |v j | |vk |

� |⇢(z)| |L(�2)(z; v)| 8(z, v) 2
�
(U (4)\U (3)) \�

�
⇥ Cn.

The final condition we require on � is that �0 becomes so large on [9(A0)2/16,+1)
that we can find a positive constant c > 0 so that

L(�2⇢ +8)(z; v) > ckvk2 8(z, v) 2
�
(U (4)\U (3)) \�

�
⇥ Cn. (7.3)

Finally, let us write u(z) ..= �18(z) + �2⇢(z) for each z 2 �. Recall that 8 is
plurisubharmonic (which is used in the calculations above). By this fact, and:

• by the maximum principle (applied to 8), and by the choice of the functions � j ,
j = 1, 2, we see that u < 0 on �;

• from the choice of the functions � j , j = 1, 2, and from the inequalities (7.2) and
(7.3), it follows that u is plurisubharmonic on �.

By the rotational symmetry of the spike�\Vj⇤ , it follows that for anyw 2 �\Vj⇤
with <(wn) sufficiently small, we have

��(w) = dist
�
<(wn) + i S(w),graph( )

�
.

Here, S(w) is our abbreviation for
p

=(wn)2 + kw0k2. From this last observation
and elementary calculus, it follows that for such a w, if ⇠w 2 @� is a point such
that kw � ⇠wk = ��(w), then

<(wn) � <
�
⇡n(⇠

w)
�

2
�
0, (<(wn)) 

0(<(wn))
�
.

Thus, it follows from Lemma 7.1 and a few elementary estimates that (we write
⇠w
n
..= ⇡n(⇠

w) henceforth)

��(w)

 (<(wn)) � S(w)

=

�
��<(⇠w

n ) � <(wn)
�
+ i
�
 (<(⇠w

n )) � S(w)
���

 (<(wn)) � S(w)
! 1 as <(wn) ! 0.

Hence, there exists a constant A00 > 0 such that

{z2� \ Vj⇤ | 0<<(zn)< A00} ⇢ � \U (1) and  (x)2(0, 1) 8x 2(0, A00); (7.4)
��(w)

 (<(wn)) � S(w)
>
1
2

8w : <(wn) 2 (0, A00) (7.5)
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We now appeal to Result 2.6. Fix a point w 2 � \ Vj⇤ such that 0 < <wn < A00.
Then, there exists a constant b > 0 such that

�(w; v) > b
kvk

|u(w)|1/2
(7.6)

= b
kvk

�
 (<(wn)) � S(w)

�1/2�
 (<(wn)) + S(w)

�1/2

(by (7.4), given the definitions of �1, �2)

>
b

p
2

kvk
�
 (<(wn)) � S(w)

�1/2 (by (7.4) above)

>
b
2

kvk

��(w)1/2
(by (7.5) above),

and this estimate holds for any arbitrary w as described above— i.e., w 2 � \ Vj⇤
such that 0 < <wn < A00.

Step 2. An upper bound for M�

Since the exceptional point q j⇤ in Step 1 was arbitrarily chosen, we actually infer
the following from Step 1: there exist a constant � > 0 and constants A00

1, . . . , A
00
N >

0 such that

�(w; v) > �
kvk

��(w)1/2
8w 2 � \ U�1

j
�
{z 2 Cn | <(zn) < A00

j }
�
and

8v 2 Cn, (7.7)

where j = 1, . . . , N . Now, let us write

M0 ..= @� \
\

16 j6NU
�1
j
�
{z 2 Cn | <(zn) > A00

j/2}
�
,

M1 ..= @� \
[

16 j6NU
�1
j
�
{z 2 Cn | <(zn) < A00

j }
�
.

It is clear from Definition 1.3 and from very standard facts about strongly Levi-
pseudoconvex hypersurfaces that the Levi-nondegeneracy condition stated in Re-
sult 2.4 holds true at every ⇠ 2 M0. Thus, it follows from Result 2.4 that there
exists an �-open neighbourhood V ofM1 and a constant � 0 > 0 such that

�(w; v) > � 0 kvk

��(w)1/2
8w 2 V \� and 8v 2 Cn. (7.8)

Now, by definition, the set

� \
⇣
V [

[
16 j6NU

�1
j
�
{z 2 Cn | <(zn) < A00

j }
�⌘
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is compact. Thus, in view of (7.7) and (7.8), it follows that

1
�(w; v)

. ��(w)1/2 8w 2 � and 8v 2 Cn : kvk = 1.

In particular, M�(r) . r1/2.

Step 3. The behaviour of k�
Let us initially fix an exceptional point in the set {q1, . . . , qN }. Let a j , h j and Bj
be the constants given by Lemma 6.4 taking  =  j . For simplicity of notation,
we shall denote the first two constants as a and h—with the dependence on j being
understood. Consider a point

w 2 � \ U�1
j
�
{z 2 Cn | <(zn) < Bj/2}

�
,

and write U j (w)=(!0,!n). Next, consider the holomorphic map9 j,w : Q↵,a,h !
Cn given by

9 j,w(⇣ ) ..= U�1
j
�
!0, �1

j (S(!)) + i=(!n) + ⇣
�

8⇣ 2 Q↵,a,h,

where S(!) ..=
p

=(!n)2 + k!0k2, and Q↵,a,h is the domain constructed in Sec-
tion 6. The parameters a and h are as just described above. We take ↵ = 1/(p j�1).
Note that this map is a C-affine embedding of Q↵,a,h into Cn . As hinted in Sec-
tion 6, we shall show that 9 j,w embeds Q↵,a,h in �—by which we can esti-
mate k�.

Observe that <(!n) < Bj/2. Hence, given the set to which w belongs and
by Definition 1.3, k!0k <  j (Bj/2). Thus, it follows from parts (1) and (2) of
Lemma 6.4 that:

(a) With w as chosen above,

{!0} ⇥
�
 �1
j (S(!)) + i=(!n) +Q↵,a,h

�

⇢
�
(z0, zn) 2 Cn | <(zn) 2 (0, A j ), =(zn)2 + kz0k2 <  j

�
<(zn)

�2 
;

(b) <(!n) 2 ( �1
j (S(!)),  �1

j (S(!)) + o).

Here o 2 Q↵,a,h is as provided by (6.5) for the above-mentioned choice of param-
eters. Now, write

K j ..= U�1
j (K ) and zw ..= 9 j,w(o),

where K is the compact set given by Lemma 6.4 taking  =  j in that lemma.
Then, it follows from part (3) of the latter lemma that

zw 2 K j 8w 2 � \ Vj : 0 < <(!n) < Bj/2. (7.9)
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From (a) we see that 9 j,w(Q↵,a,h) ⇢ �. By definition, 9 j,w(� �1
j (S(!)) +

<(!n)) = w. Thus, as holomorphic maps are contractive relative to the Kobayashi
distance, we have

k�(zw,w) 6 kQ↵,a,h (o,� �1
j (S(!)) + <(!n)).

In view of (b), part (3) of Proposition 6.1 gives us— taking x0 = o in that proposi-
tion— the estimate

k�(zw,w) 6 C( j) +
⇡

4h
|<(!n) �  �1

j (S(!))|�(p j�1),

for some constant C( j) > 0. Since the maps U j and U�1
j preserve Euclidean dis-

tances, the above inequality together with part (4) of Lemma 6.4 gives us the fol-
lowing:

k�(zw,w)6C( j) +
⇡

4h
��(w)�(p j�1) 8w2� \ Vj : 0<<(!n)< Bj/2. (7.10)

Since the exceptional point q j was chosen arbitrarily in this discussion, the state-
ments (7.9) and (7.10) hold for each j = 1, . . . , N .

Since @� is of class C2 away from the points q1, . . . , qN , and � is bounded, it
is routine to find a compact set K0 ⇢ � and a constant R > 0 such that for each
point

w 2 � \
⇣
K0 [

[
16 j6NU

�1
j
�
{z 2 Cn | <(zn) < Bj/2}

�⌘
(7.11)

there exists a point

⇠w 2 @� \
[

16 j6NU
�1
j
�
{z 2 Cn | <(zn) < Bj/4}

�

so that, if ⌘w denotes the unit inward-pointing normal vector to @�, then

(a0) ⇠w + D(R; R)⌘w ⇢ �;
(b0) w lies on the line segment joining ⇠w to ⇠w + R⌘w =.. zw; and
(c0) zw 2 K0.

Thus, for each w as indicated above, there is a unique number t (w) 2 (0, R) such
that ⇠w + t (w)⌘w = w. From this (and the fact that holomorphic maps are contrac-
tive relative to the Kobayashi distance) it follows that

k�(zw,w)6kD(R;R)(0, t (w)) =
1
2
log

✓
2� (t (w)/R)

t (w)/R

◆

6 log(
p
2) +

1
2
log

✓
1

k⇠w � wk

◆

6 log(
p
2) +

1
2
log

✓
1

��(w)

◆

8w satisfying the condition given by (7.11).

(7.12)
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Let us now fix a point z0 2 �. Write

K ⇤ ..= K0 [ K1 [ · · · [ KN ,

C0 ..= supx2K ⇤ k�(z0, x) +max
�
log(

p
2),C(1), . . . ,C(N )

�
.

Then, by the triangle inequality for k�, (7.9), and by the inequalities (7.10) and
(7.12) it follows that there exists a constant C1 > 0 such that

k�(z0, z) 6 C0 + C1��(z)�max16j6N p j+1 8z 2 �.

Step 4. Caltrops are visibility domains with respect to the Kobayashi distance
Let us write p0 ..= max16 j6N p j . Then, by hypothesis, p0 2 (1, 3/2). We shall
complete the proof using Theorem 1.5. In the notation of that theorem, we can—
using the conclusion of Step 3— take f (r) = C0 + C1r p0�1. Thus, using the
conclusion of Step 2, we have

0 6
M�(r)
r2

f 0
✓
1
r

◆
.

r1/2

r2
· r2�p0 =

1
r p0�(1/2) .

As p0 < 3/2, we have

0 6
Z r0

0

M�(r)
r2

f 0
✓
1
r

◆
dr .

Z r0

0

dr
r p0�(1/2) < 1

for r0 so small that (0, r0) is included in the domain of the integrand. Hence,
we conclude from Theorem 1.5 that � is a visibility domain with respect to the
Kobayashi distance.
Step 5. Caltrops are not Goldilocks domains
We will show that the condition on the growth of the Kobayashi distance that
Goldilocks domains must satisfy fails in a caltrop. To do so, we fix an exceptional
point q j⇤ and refer the reader to Step 1 for an explanation for why we can, without
loss of generality, take � \ Vj⇤ to be

� \ Vj⇤ =
�
z 2 Cn | 0 < <(zn) < A, =(zn)2 + kz0k2 <  (<(zn))2

 
(7.13)

(recall that Vj⇤ is the neighbourhood of q j⇤ given by Definition 1.3). As in Step 1,
we drop, for the moment, the sub/superscript “ j⇤”.

At this stage, we shall need the following result:

Lemma 7.2. Fix an exceptional point q j⇤ 2 @� and let (z1, . . . , zn) be the system
of holomorphic coordinates centred at q j⇤ such that � \ Vj⇤ has the form (7.13).
Let A00 be as introduced just prior to (7.4), and let z0 = (0, . . . , 0, A00/2). Then, for
any z 2 � \ Vj⇤ such that 0 < <(zn) < A00/2, we have

k�(z0, z) & <(zn)�(p�1) � (A00/2)�(p�1). (7.14)
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We shall defer the proof of this lemma until the end of this section. Instead, let us
use it to complete this proof. Write zx ..= (0, . . . , 0, x), 0 < x < A00/2. Now, take
z = zx in the above lemma to get

k�(z0, zx ) & x�(p�1) � (A00/2)�(p�1).

Now, substitute zx for the w in the statement just prior to (7.4) in Step 1 to infer that
��(zx ) t x p for any x 2 (0, A00/2). Applying this to the last estimate, we have

k�(z0, zx ) & ��(zx )�1+(1/p) � (A00/2)�(p�1).

Since, p = p j⇤ > 1, ��(zx )�1+(1/p)/ log
�
1/��(zx )

�
! +1 as zx ! q j⇤ . Thus

k�(z0, zx ) cannot satisfy the upper bound (1.1) for any choice of constants C,↵ >
0 as zx ! q j⇤ . Thus the caltrop � is not a Goldilocks domain.

We now provide the following:

Proof of Lemma 7.2. Fix a z 2 � \ Vj⇤ with 0 < <(zn) < A00/2. In proving this
lemma, we shall use a slightly different lower bound for �, which was also derived
in Step 1. Let

C(z) ..= the class of all piecewise C1 paths � : ([0, 1], 0, 1) ! (�, z0, z).

As discussed at the beginning of Section 2:

k�(z0, z) = inf
�2C(z)

Z 1

0
�(� (t); � 0(t)) dt. (7.15)

Pick a � 2 C(z). Since <(�n) is a continuous function and <(�n)([0, 1]) �
[<(zn), A00/2], it follows from elementary topological considerations that there ex-
ist numbers ↵,� 2 [0, 1] such that

<(�n)([↵,�]) = [<(zn), A00/2].

Therefore Z 1

0
�(� (t); � 0(t)) dt >

Z �

↵
�(� (t); � 0(t)) dt

>
Z �

↵

bk� 0(t)k
|u(� (t))|1/2

dt,
(7.16)

The second inequality above follows from the estimate (7.6).
For any point w 2 � \ Vj⇤ with 0 < <(wn) < A00 we have

|u(w)| =  (<(wn))
2 � kw0k2 � =(wn)

2 6  (<(wn))
2 6 C2<(wn)

2p
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where C > 0 is the constant C j⇤ mentioned in Definition 1.3. Therefore, (7.16)
gives us (the last three integrals below are Riemann integrals; it is not hard to es-
tablish that the integrands are Riemann integrable):

Z 1

0
�(� (t); � 0(t)) dt >

b
C

Z �

↵

|(<(�n))
0(t)|

<(�n(t))p
dt

>
b
C

�
�
�
�

Z �

↵

(<(�n))
0(t)

<(�n(t))p
dt
�
�
�
�

=
b
C

Z A00/2

<(zn)

1
t p
dt .

A few words about the change-of-variables formula that gives the last equality:
since � is piecewise C1, we invoke (a small refinement of) the classical change-of-
variables formula on a finite collection of subintervals that tile [↵,�]. Recalling
that � was chosen arbitrarily from the class C(z), this last estimate, together with
(7.15), gives us (7.14).

8. Caltrops are taut

In this section we shall prove that any caltrop is taut. While this is believable,
it takes a little effort to show owing to the exceptional points in the boundary of a
caltrop�. At these points, @� is not just non-smooth but is not even Lipschitz (were
@� Lipschitz, tautness would have followed from a result of Kerzman–Rosay [21]).
We first need the following standard result.

Lemma 8.1. Let � be a bounded domain in Cn and suppose that for each z0 2 �
and ⇠ 2 @�, we have

lim
�3w!⇠

k�(z0, w) = +1. (8.1)

Then the metric space (�, k�) is (Cauchy) complete.

The proof of this lemma involves very standard arguments. We use the conclusion
of Result 2.1 and the fact that the metric-topology on � induced by k� coincides
with its standard topology. We skip the routine details.

With this, we are in a position to prove the following:

Theorem 8.2. Caltrops are complete relative to the Kobayashi distance. In partic-
ular, they are taut.

Proof. Let � be a caltrop, and let {q1, . . . , qN } ⇢ @� be the set of exceptional
boundary points. Fix a point z0 2 � and a point ⇠ 2 @�. First, we consider the
case where ⇠ 2 @�\{q1, . . . , qN }. Pick a point ⌘ 2 @�\({q1, . . . , qN }[{⇠}). Thus,
@� is strongly Levi-pseudoconvex around ⇠ and ⌘. We now appeal to Result 2.3:
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let V⇠ and V⌘ be the neighbourhoods and let C > 0 be the constant given by this
result. Let b⌘ be some point in � \ V⌘. Consider any sequence (w⌫)⌫>1 ⇢ �
such that w⌫ ! ⇠ . Without loss of generality, we may assume that this sequence is
contained in � \ V⇠ . Then, Result 2.3 tells us that

k�(z0, w⌫) > k�(w⌫, b⌘) � k�(b⌘, z0)

> 2�1 log
1

��(w⌫)
+ 2�1 log

1
��(b⌘)

� k�(b⌘, z0) � C

! +1 as ⌫ ! 1.

As ⇠ was arbitrarily chosen from @� \ {q1, . . . , qN }, the above establishes (8.1) for
any non-exceptional boundary point.

Now, let ⇠ be an exceptional boundary point. As in the statement of Lem-
ma 7.2, call this point q j⇤ and let (z1, . . . , zn) be the system of holomorphic coor-
dinates described in this lemma. Consider any sequence (w⌫)⌫>1 ⇢ � such that
w⌫ ! q j⇤ . Without loss of generality, we may assume that this sequence is con-
tained in�\Vj⇤ . Now, Lemma 7.2 is stated keeping in mind a specific assumption
about � \ Vj⇤ (stated just prior to it). Here too we may without loss of generality
assume that � \ Vj⇤ is the set given by (7.13). This is because the coordinates
(z1, . . . , zn) are given by a biholomorphism defined on all of � (indeed, on all of
Cn). With this assumption, we shall identify zn(w⌫) and ⇡n(w⌫) =.. w⌫,n . Then
(with this assumption) we have

<(w⌫,n) ! 0 as ⌫ ! 1. (8.2)

Let A00 the constant given by Lemma 7.2, and let us denote the point z0 mentioned
in this lemma by ⇣ j⇤ (to avoid confusion with the z0 fixed above). Then, this lemma
tells us that

k�(⇣ j⇤, w⌫) & <(w⌫,n)
�(p�1) � (A00/2)�(p�1) ! +1 as ⌫ ! 1.

The last statement follows from (8.2). Owing to the triangle inequality for k�, the
above suffices to establish (8.1) for ⇠ = q j⇤ . Together with the conclusion of the
previous paragraph, we conclude—using Lemma 8.1— that (�, k�) is (Cauchy)
complete.

As (�, k�) is complete, it follows from a result of Kiernan [22] that � is
taut.

9. Wolff–Denjoy theorems

We now have all the tools needed to prove the two Wolff–Denjoy-type theorems,
and a corollary, stated in Section 1. We reiterate that the key heuristic in the proof
of Theorem 1.8 is as stated in the second paragraph following the statement of The-
orem 1.8. Since that heuristic is entirely a consequence of visibility, large parts of
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the proof below will be similar to the proof of [9, Theorem 1.10] for Goldilocks
domains, which also relies on this heuristic. The supporting lemmas/theorems
to the proof below are those that show that the quantitative conditions defining a
Goldilocks domain are not needed.

The proof of Theorem 1.8 involves the analysis of two separate cases, one
of which is rather technical. This is because we do not assume that (�, k�) is
Cauchy complete in Theorem 1.8— to do so would be too restrictive. To illustrate:
it is not known whether, for a weakly pseudoconvex domain � b Cn , n � 3,
(�, k�) is Cauchy complete (that such a domain is a visibility domain follows from
[9, Theorem 1.4]). In contrast, tautness is much simpler to determine in practice,
and suffices for the conclusion of Theorem 1.8. With these words, we give the
following:

Proof of Theorem 1.8. Since � is taut, it follows from a result by Abate [2, Theo-
rem 2.4.3] that either the set {F⌫ | ⌫ 2 Z+} is relatively compact in O(�;�) or
(F⌫)⌫>1 is compactly divergent on �. In the former case, clearly, for each z 2 �,
the orbit {F⌫(z) | ⌫ 2 Z+} is relatively compact in �.

Hence we now suppose that (F⌫)⌫>1 is compactly divergent. By Montel’s
theorem, there exist subsequences of (F⌫)⌫>1 that converge uniformly on compact
subsets of � to @�-valued holomorphic maps. By Theorem 4.3, the latter maps are
constant maps. Thus, we shall identify the set

0 ..= {F⌫ | ⌫ 2 Z+}
compact�open

\ {F⌫ | ⌫ 2 Z+}

as a set of points in @�. In a similar vein, we shall refer to the constant maps
constp, where p 2 @�, simply as p. Our goal is to show that 0 is a single point.
We assume, to get a contradiction, that 0 contains at least two points. We divide
our discussion into two cases:
Case 1. We first consider the case in which for some (and hence any) o 2 �,

lim sup
⌫!1

k�(F⌫(o), o) = 1.

We ought to mention here that (as implied by the discussion following the statement
of Theorem 1.8) the essence of the argument under the heading “Case 1” in the
proof of [9, Theorem 1.10] applies in the present, more general, setting. The chief
differences are as follows:

• The lemmas/propositions supporting the two arguments differ;
• Since the Goldilocks condition in [9] involves an upper bound on k�, certain
inequalities and observations (e.g., (9.2) below) needed no argument in the latter
work, but for which we provide explanations (when needed) here.

In this case we can find a strictly increasing sequence (⌫i )i>1 ⇢ Z+ such that for
every i 2 Z+ and every k 6 ⌫i , k�(Fk(o), o) 6 k�(F⌫i (o), o). By passing to a
subsequence and relabelling, if necessary, we may assume that F⌫i ! ⇠ uniformly
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on compact subsets of � for some ⇠ 2 @�. By assumption, there is a subsequence
(Fµ j ) j>1 that converges uniformly on compact subsets to ⌘, where ⌘ 2 @� and
⌘ 6= ⇠ . By Proposition 4.1, it cannot be the case that

lim sup
j!1

k�(Fµ j (o), o) = 1,

since ⌘ 6= ⇠ . Therefore, lim sup j!1 k�(Fµ j (o), o) < 1. Hence, by the triangle
inequality:

lim sup
i!1

lim sup
j!1

k�
�
F⌫i (o), Fµ j (o)

�

> lim sup
i!1

lim sup
j!1

�
k�
�
F⌫i (o), o

�
� k�

�
Fµ j (o), o

��

> lim sup
i!1

h
k�
�
F⌫i (o), o

�
� lim sup

j!1
k�
�
Fµ j (o), o

�i

= 1.

(9.1)

Fix an ` 2 Z+. When we apply Theorem 4.3 to any subsequence of (Fµ j�`) j>1
that converges uniformly on compact subsets of �, we get— since any such subse-
quence converges to ⌘ on the compact K` ..= {F`(o)}—that

(Fµ j�`) j>1 converges uniformly on compact subsets to ⌘. (9.2)

Let us define
M`

..= lim sup
j!1

k�(Fµ j�`(o), o).

We claim that
lim sup
`!1

M` < 1.

Suppose not. Then there is a strictly increasing sequence (`k)k>1 ⇢ Z+ such that
for each k 2 Z+, M`k > k. Next, we can choose positive integers j1 < j2 < j3 <
. . . such that for each k 2 Z+

kFµ jk�`k (o) � ⌘k < 1/k and k�
�
Fµ jk�`k (o), o

�
> k.

These inequalities imply that Fµ jk�`k (o) ! ⌘ as k ! 1 and

lim sup
k!1

k�
�
Fµ jk�`k (o), o

�
= 1,

which contradicts Proposition 4.1, since ⌘ 6= ⇠ . Hence lim sup`!1 M` < +1, as
claimed. Then

lim sup
i!1

lim sup
j!1

k�
�
F⌫i (o), Fµ j (o)

�
6 lim sup

i!1
lim sup
j!1

k�
�
o, Fµ j�⌫i (o)

�

= lim sup
i!1

M⌫i < 1.

This contradicts (9.1), and finishes the consideration of Case 1.
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Case 2. We now consider the case in which for some (and hence any) o 2 �,

lim sup
⌫!1

k�(F⌫(o), o) < 1.

The argument that follows is almost identical to that under the heading “Case 2” in
the proof of [9, Theorem 1.10]. However, since the argument is rather technical,
we reproduce it below instead of directing the reader elsewhere. Recall that, by
assumption, there exist two distinct points ⇠, ⌘ 2 0. We choose strictly increasing
sequences (⌫i )i>1, (µ j ) j>1 ⇢ Z+ such that F⌫i ! ⇠ and Fµ j ! ⌘ uniformly
on compact subsets of �. Choose �-open neighbourhoods V⇠ and V⌘ of ⇠ and ⌘,
respectively, such that V⇠ \ V⌘ = ?. By the fact that � is a visibility domain
with respect to the Kobayashi distance, there exists a compact subset K of � such
that for every (1, 1)-almost-geodesic � : [0, T ] ! � satisfying � (0) 2 V⇠ and
� (T ) 2 V⌘, range(� ) \ K 6= ?.

Next, for � > 0 arbitrary, we define G� : K ⇥ K ! [0,+1) by

G�(x1, x2) ..= inf{k�(Fm(x1), x2) | m 2 Z+ and k⇠ � Fm(x1)k < �}.

By the hypothesis of Case 2, sup �> 0; x1, x22K G�(x1, x2) < 1. Fix x1, x2 2 K ; if
0 < �1 < �2, then G�1(x1, x2) > G�2(x1, x2). So, for any x1, x2 2 K ,

G(x1, x2) ..= lim
�!0+

G�(x1, x2)

is well-defined. We also define

✏ ..= lim inf
z!⌘

inf
y2K

k�(y, z).

Note that by Result 2.1, ✏ > 0. Choose points q1, q2 2 K such that

G(q1, q2) < inf{G(x1, x2) | x1, x2 2 K } + ✏.

By an argument similar to the one leading to (9.2), for each fixed j 2 Z+

(F⌫i+µ j )i>1 converges uniformly on compact subsets to ⇠ .

Therefore, we can find a strictly increasing sequence (i j ) j>1 ⇢ Z+ such that:

(a) (F⌫i j ) j>1 converges uniformly on compact subsets to ⇠ ;
(b) (F⌫i j+µ j ) j>1 converges uniformly on compact subsets to ⇠ ;
(c) lim j!1 k�(F⌫i j (q1), q2) = G(q1, q2).

Finally, choose a sequence ( j ) j>1 such that 0 <  j 6 1 for all j and such that
 j ! 0+ as j ! 1. By Proposition 4.4 of [9]—which guarantees the existence
of (�, )-almost-geodesics joining a given pair of points, for any � > 1 and  >
0—for each j there exists a (1,  j )-almost-geodesic � j : [0, Tj ] ! � such that
� j (0) = F⌫i j+µ j (q1) and � j (Tj ) = Fµ j (q2). Clearly, for sufficiently large j ,
� j (0) 2 V⇠ and � j (Tj ) 2 V⌘. Now, because every � j is a (1, 1)-almost-geodesic,
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range(� j ) \ K 6= ? for each j . Hence, for each j , we may choose a point x⇤
j 2

range(� j ) \ K . Since K is compact, we may, by passing to a subsequence and
relabelling, assume that x⇤

j ! x0 2 K as j ! 1. Therefore, by Lemma 2.9, we
have

k�(F⌫i j+µ j (q1), Fµ j (q2)) > k�(F⌫i j+µ j (q1), x⇤
j )+k�(x⇤

j , F
µ j (q2))�3 j . (9.3)

Now

lim inf
j!1

k�(F⌫i j+µ j (q1), x⇤
j )> lim infj!1

�
k�(F⌫i j+µ j (q1), x0) � k�(x0, x⇤

j )
�

= lim inf
j!1

k�(F⌫i j+µ j (q1), x0)� lim
j!1

k�(x0, x⇤
j )

= lim inf
j!1

k�(F⌫i j+µ j (q1), x0) > G(q1, x0).

(9.4)

Again, from the definition of ✏,

lim inf
j!1

k�(x⇤
j , F

µ j (q2)) > ✏.

Therefore from (9.3) we obtain, since lim j!1  j = 0:

lim inf
j!1

k�(F⌫i j+µ j (q1), Fµ j (q2)) > lim inf
j!1

k�(F⌫i j+µ j (q1), x⇤
j )

+ lim inf
j!1

k�(x⇤
j , F

µ j (q2))

> G(q1, x0) + ✏. (by (9.4) above)

On the other hand,

lim sup
j!1

k�(F⌫i j+µ j (q1), Fµ j (q2)) 6 lim sup
j!1

k�(F⌫i j (q1), q2) = G(q1, q2).

Recall that the sequence (i j ) j>1 has been so picked that the last equality holds true.
From the last two inequalities we obtain

G(q1, q2) > G(q1, x0) + ✏,

which is a contradiction to the choice of q1 and q2. This finishes the consideration
of Case 2.

The above arguments show that we have a contradiction in either case,
whence our assumption about 0 must be wrong. This completes the proof of the
theorem.

The conclusions of the last theorem constitute a step in the following:

The proof of Theorem 1.9. Since � is a taut bounded domain, Result 2.2-(2.2) tells
us that it is pseudoconvex. It is well known—see Theorem 4.2.7 of [17], for in-
stance— that H j (�; C) = 0 for all j > n since � is pseudoconvex. By the
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universal coefficient theorem,

dimC(H j (�; C)) = dimQ(H j (�; Q)) = rank(Hj (�; Z)) 8 j 2 N.

From the last two statements, together with our hypothesis, it follows that

H j (�; Q) = 0 8 j 2 N, j odd,
dimQ(H j (�; Q)) < 1 8 j 2 N, j even.

Therefore we can invoke Corollary 2.10 from the article [3] by Abate to conclude
that either F has a periodic point in � or (F⌫)⌫>1 is compactly divergent. In the
latter case, the first outcome of the dichotomy presented by Theorem 1.8 cannot
hold true. Thus, by Theorem 1.8, there exists a ⇠ 2 @� such that (F⌫)⌫>1 converges
uniformly on compact subsets of � to const⇠ . However, this conclusion is not
possible if F has a periodic point in�. So, in this case, the dichotomy presented by
Theorem 1.8 implies that for each z 2 �, the orbit {F⌫(z) | ⌫ 2 Z+} is relatively
compact in �. This completes the proof of the theorem.

We are finally in a position to give a proof of Corollary 1.10. The phrase “finite
type” refers to the finiteness of the D’Angelo 1-type. We shall not define this term
here: we refer the reader to [12] for a definition.

The proof of Corollary 1.10. If� is a bounded pseudoconvex domain of finite type,
then, by definition, @� is at least C2-smooth. Therefore, it follows from a theorem
of Kerzman–Rosay [21, Proposition 2] that � is taut. On the other hand, if � is a
caltrop, then we have shown—see Theorem 8.2 above— that � is taut.

If � is a bounded pseudoconvex domain of finite type, then— in the terminol-
ogy of [9]— it is a Goldilocks domain and thus a visibility domain; see Section 2
and Theorem 1.4 of [9]. If � is a caltrop, then Theorem 1.4 tells us that it is a vis-
ibility domain. Thus, in either case, � satisfies all the conditions of Theorem 1.9.
Hence, the corollary follows.
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